SYNOPSIS DER SCHNITTHEORIE

Längen

Ein Modul M heißt *einfach* wenn für $N \subseteq M$ immer N = 0 gilt. Ein Modul M hat endliche Länge wenn es eine Kette von Untermoduln

$$(0)=M_r\subseteq M_{r-1}\subseteq\cdots\subseteq M_1\subseteq M_0=M$$

gibt, für die M_i/M_{i+1} immer einfach ist.

Es sei (1)

$$0 \rightarrow N \rightarrow M \rightarrow P \rightarrow 0$$

exakt. Dann hat M endliche Länge, genau dann, wenn dies für N und P gilt. **Beweis.** Um dies einzusehen betrachte man eine Kette $\cdots \subseteq M_{i-1} \subseteq M_i \subseteq \cdots$ wie oben für M und die exakten Sequenzen

$$0 \to (M_i \cap N)/(M_{i+1} \cap N) \to M_i/M_{i+1} \to (M_i + N)/(M_{i+1} + N) \to 0$$

Man erkennt, daß ein Elementarschritt in der Mitte immer einen Schritt entweder

links oder rechts nach sich zieht. Hat ein Modul M endliche Länge mit zwei Ketten $(M_i)_{i=1}^r$ und $(M_j')_{j=1}^s$, so setzt man in obiger Sequenz $N = M'_1$ und erkennt induktiv r = s. Diese Zahl heißt dann $len_A M$, die A-Länge von M.

Für die Sequenz (1) gilt dann len M = len N + len P.

Lemma 0.1. Ist A ein noetherscher Ring und M ein endlich erzeugter A-Modul, so gibt es eine Filtrierung $(0) \subseteq \cdots \subseteq M_{i-1} \subseteq M_i \subseteq \cdots \subseteq M$ mit

$$0 \longrightarrow M_{i-1} \longrightarrow M_i \longrightarrow A/\mathfrak{p}_i \longrightarrow 0$$

 $mit \ Primidealen \ \mathfrak{p}_i \ und \ \mathrm{Ass} \ M \subseteq \{\mathfrak{p}_i\}.$

Es ist äquivalent:

- (1) $len M < \infty$.
- (2) Alle \mathfrak{p}_i sind maximal.

Es sei A noethersch und len $M < \infty$. Dann ist

$$\operatorname{len}_{A} M = \sum_{\mathfrak{p} \subseteq A} \operatorname{len}_{A_{\mathfrak{p}}} M_{\mathfrak{p}}$$

Ein $A_{\mathfrak{p}}$ -Modul M ist genau dann einfach, wenn er als A-Modul einfach ist. Daher ist dann auch len_A $M = \text{len}_{A_p} M$.

Proposition 0.1. *Es seien* (B, \mathfrak{q}) *und* (A, \mathfrak{p}) *zwei lokale Artinringe und B eine flache* A-Ālgebra. Dann ist

(2)
$$\operatorname{len} B = (\operatorname{len} A)\operatorname{len}(B/\mathfrak{p}B)$$

Herbrandtquotienten

Es sei M ein A-Modul, $\varphi: M \to M$ ein A-Endomorphismus dann sei $_{\varphi}M = \ker \varphi$ sowie $M_{\varphi} = M/\operatorname{im} \varphi = \operatorname{coker} \varphi$.

Definition 0.1. *Ist* $\operatorname{len}_{A\varphi} M < \infty$ *und* $\operatorname{len}_{A} M_{\varphi} < \infty$, *so ist*

(3)
$$e_A(\varphi; M) = e(\varphi; M) = \operatorname{len}_A M_{\varphi} - \operatorname{len}_{A \varphi} M$$

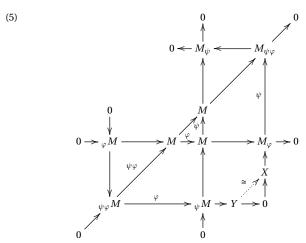
der Herbrandquotient von M $bezüglich \varphi$.

Ist A noethersch und M ein A-Modul, so is

$$e_A(\phi, M) = \sum_{\mathfrak{p} \subseteq A} e_{A_{\mathfrak{p}}}(\phi_{\mathfrak{p}}, M_{\mathfrak{p}})$$

Proposition 0.2. Es sei M ein A-Modul wie oben und φ , ψ zwei Endomorphismen von M. Dann sind alle drei Herbrandquotienten $e(\varphi; M)$, $e(\psi; M)$, $e(\psi; M)$ definiert, wenn zwei von ihnen es sind. Es gilt dann auch

(4)
$$e(\psi \varphi; M) = e(\psi; M) + e(\varphi; M).$$



Lemma 0.2. Sind für

$$0 \longrightarrow N \longrightarrow M \longrightarrow P \longrightarrow 0$$

$$\downarrow^{\phi} \qquad \downarrow^{\psi} \qquad \downarrow^{\chi}$$

$$0 \longrightarrow N \longrightarrow M \longrightarrow P \longrightarrow 0$$

zwei von den $e_A(\phi,N),e_A(\psi,M),e_A(\chi,P)$ definiert, so auch der dritte und es ist

$$e_A(\psi, M) = e_A(\phi, N) + e_A(\chi, P)$$

Lemma 0.3. Es sei $M = A^n$ ein endlich erzeugter freier A-Modul und $\phi: M \to M$ ein A-linearer Endomorphismus. Dann ist $e_A(\phi,M)$ genau dann definiert, wenn $e_A(\det(\phi), A)$ definiert ist und es gilt

(6)
$$e_A(\phi, M) = e_A(\det(\phi), A)$$

Beweis. Ist $e_A(\phi)$ wohldefiniert, so auch alle $e_{A_{\mathfrak{p}}}(\phi_{\mathfrak{p}})$ für alle $\mathfrak{p} \subseteq A$, prim. Insbesondere ist $\mathrm{Ass}_{A_{\mathfrak{m}}}((M/\phi(M))_{\mathfrak{m}})=\{\mathfrak{m}\}$ für endlich viele \mathfrak{m} , maximal. Es kann dann nicht $\det \phi \in \mathfrak{p} \neq \mathfrak{m}$ sein, denn dann wäre $\operatorname{rang}(\phi \otimes_A A/\mathfrak{p}) < n$ und $\operatorname{coker}(\phi \otimes_A A/\mathfrak{p}) = n$ $(\operatorname{coker} \phi) \otimes_A A/\mathfrak{p}$ nicht von endlicher Länge. Also ist entweder $\det \phi \in A_{\mathfrak{m}}^*$ und $e_A(\phi) = e_A(\det \phi) = 0$ oder $\mathfrak{m} \supseteq (\det \phi)$ von der Höhe 1 oder 0. In beiden Fällen ist $e_A(\det \phi)$ wohldefiniert, für A artinsch ist es selbstverständlich, ansonsten folgt es

Umgekehrt sei für det $\phi = \delta$ die Funktion $e_A(\delta)$ wohldefiniert, also $A/\delta A$ und ker δ von endlicher Länge. Wegen $\psi = \delta E = \phi \phi_{\rm ad} = \phi_{\rm ad} \phi$ ist $M/\phi(M)$ ein Quotient von $M/\psi(M)$ und ker $\phi \subseteq \ker \psi$. Da $M/\psi(M)$ und ker ψ von endlicher Länge sind, gilt dies auch für $M/\phi(M)$ und ker ϕ .

Um die Gleichheit $e_A(\phi) = e_A(\det \phi)$ allgemein zu zeigen, beweisen wir sie erst für einen (lokalen) Ring (A, \mathfrak{m}) der entweder ein Artinring oder eindimensional mit einem minimalen Primideal $\mathfrak p$ ist. Ist $\phi \sim R$ mit $R \in \operatorname{Mat}(A, n \times n)$, so können wir T = RR mit

(7)
$$\begin{pmatrix} \det \phi & t_1' \\ 0 & t_2' \\ \vdots & \vdots \\ 0 & t_n' \end{pmatrix} = \begin{pmatrix} r_{11} & \cdots & r_{1n} \\ r_{21} & \cdots & r_{2n} \\ \vdots & & \vdots \\ r_{n1} & \cdots & r_{nn} \end{pmatrix} \begin{pmatrix} b_1 & 0 & \cdots & 0 \\ b_2 & 1 & \cdots & 0 \\ \vdots & \vdots & & \vdots \\ b_n & 0 & \cdots & 1 \end{pmatrix}$$

schreiben. Ist A eindimensional, so können wir $b_1 \notin \mathfrak{p}$ annehmen, also die Wohl-

Definition of the two $e_A(B_1)$ also von $e_A(B)$ and damit von $e_A(T)$, Da T and B die Zerlegung $A^n = A \oplus A^{n-1}$ respektieren, folgt durch Induktion über n immer $e_A(T) = e_A(\det T)$ und $e_A(B) = e_A(\det B)$. Weiterhin ist wegen T = RB auch $\det T = (\det R)(\det B) \text{ und damit } e_A(T) = e_A(R) + e_A(B) \text{ sowie } e_A(\det T) = e_A(\det R) + e_A(\det B).$ Alles zusammen also $e_A(R) = e_A(\det R)$.

Der allgemeine Fall wird dann durch einen eindimensionalen lokalen Ring (A, \mathfrak{m}) mit endlich vielen minimalen Primidealen \mathfrak{p}_i repräsentiert. Wir benutzen die übliche Filtrierung

$$0 \to \mathfrak{a}_{i-1} \to \mathfrak{a}_i \to A/\mathfrak{q}_i \to 0$$

wo \mathfrak{q}_i entweder ein \mathfrak{p}_i oder \mathfrak{m} ist. Das Diagramm

liefert uns $e_A(\phi_i)=e_A(\phi_{i-1})+e_A(\psi_i)$ und ein analoges Diagramm für det ϕ liefert $e_A(\det\phi_i)=e_A(\det\phi_{i-1})+e_A(\det\psi_i)$. Nach Induktion ist $e_A(\phi_{i-1})=e_A(\det\phi_{i-1})$ und nach dem obigen Spezialfall auch $e_A(\psi_i)=e_A(\det\psi_i)$. Zusammen also $e_A(\phi_i)=e_A(\phi_i)$ $e_A(\det \phi_i)$ und deshalb am Ende der Induktionskette $e_A(\phi) = e_A(\det \phi)$.

Lemma 0.4. Es sei A ein eindimensionaler lokaler Ring mit minimalen Primidealen $\mathfrak{p}_1,\ldots,\mathfrak{p}_t$. Weiter sei M ein endlich erzeugter A-Modul und $a\in A$ mit $a\notin \mathfrak{p}_j$ für alle

(8)
$$e_{A}(a, M) = \sum_{i=1}^{t} \operatorname{len}_{A_{\mathfrak{p}_{i}}}(M_{\mathfrak{p}_{i}}) \cdot e_{A}(a, A/\mathfrak{p}_{i}) =$$

$$= \sum_{i=1}^{t} \operatorname{len}_{A_{\mathfrak{p}_{i}}}(M_{\mathfrak{p}_{i}}) \cdot \operatorname{len}_{A}(A/(\mathfrak{p}_{i}, aA))$$

Die Funktion ord₄

Es sei A ein eindimensionaler Integritätsring mit Quotientenkörper K. Dann existiert eine Abbildung

(9)
$$\operatorname{ord}_A: K^* \to \mathbb{Z}, \quad f \mapsto \operatorname{ord}(f)$$

Diese ist folgendermaßen definiert:

Es sei sei f = a/s, mit $a, s \in A - \{0\}$, ein beliebiges Element von K^* . Definiere für $a \in A$ die Abbildung $\phi_a : A \to A$ mit $\phi_a(x) = ax$ und setze

(10)
$$\operatorname{ord}_{A}(a) = e_{A}(\phi_{a}; A) = \operatorname{len}_{A}(A/aA)$$

Weiterhin setze

(11)
$$\operatorname{ord}_{A}(f) = \operatorname{ord}_{A}(a/s) = \operatorname{ord}_{A}(a) - \operatorname{ord}_{A}(s)$$

Es sei nun X ein integres Schema und $x \in X$ ein Punkt der Höhe 1. Dann ist $A = \mathcal{O}_{X,x}$ ein eindimensionaler Integritätsring und es existiert damit auch die Abbildung ord_A , die wir auch mit v_x bezeichnen werden:

(12)
$$v_{\mathcal{O}_{X,x}} = v_x = \operatorname{ord}: K(X)^* \to \mathbb{Z}, \quad f \mapsto v_x(f)$$

Lemma 0.5. Es sei A ein eindimensionaler Integritätsbereich mit Quotientenkörper K=Q(A). Weiter sei $\phi:M\to M$ ein Endomorphismus eines endlich erzeugten A–Moduls M und $\phi_K : M \otimes_A K \to M \otimes_A K$ der induzierte Endomorphismus. Wenn $dann \det(\phi_K) \neq 0$ ist, so gilt

(13)
$$e_A(\phi, M) = \operatorname{ord}_A(\det(\phi_K))$$

Die Gruppe A(X)

Es sei X ein algebraisches Schema über dem Grundkörper K. Weiter sei

$$\frac{\sum\limits_{\substack{l \text{ dim } V = k \\ V \text{ integer}}}}{\sum\limits_{i} m_{i}[V_{i}] \mid m_{i} \in \mathbb{Z}, V_{i} \text{ Untervarietät von } X \text{ mit dim } V_{i} = k}$$

Definition 0.2. Die Gruppe $Z_k(X)$ ist die Gruppe der k-Zykel von X. Es sei $Z_*(X)$ =

 $\bigoplus_k Z_k(X)$. **Definition 0.3.** Ist X eine Varietät $mit \dim X = n \ und \ f \in K(X)^* \ dann \ ist$

(15)
$$\operatorname{div}_{X}(f) = \operatorname{div}(f) = \sum_{\substack{x \in X, \\ \operatorname{dim} \theta_{X,x} = 1}} \nu_{x}(f) \{x\}^{\mathsf{T}} \subseteq Z_{n-1}(X)$$

der Divisor von f auf X.

 $Z_k(X) = \bigoplus \mathbb{Z} =$

Proposition 0.3. Für X Varietät mit dim X = n und $f \in K(X)^*$ ist

(16)
$$\operatorname{div}(f^{-1}) = -\operatorname{div}(f) \in Z_{n-1}(X).$$

Ist X ein algebraisches Schema und $W \subseteq X$ eine (k+1)-dimensionale Untervarietät sowie $f \in K(W)^*$, so ist

(17)
$$\operatorname{div}(f) = \sum \nu_{V_i}(f)[V_i]$$

eine formale Summe von k-dimensionalen Untervarietäten V_i von W und damit auch von X. Also ist $div(f) \subseteq Z_k(X)$.

Definition 0.4. Ein Zykel $\alpha \in Z_k(X)$ heißt rational äquivalent zu 0, geschrieben $\alpha \sim 0$, wenn ein System $W_1, \dots, W_r \subseteq X$ von Varietäten und rationalen Funktionen $f_i \in K(W_i)^*$ existiert, so daß

(18)
$$\alpha = \sum_{i=1}^{r} \operatorname{div}(f_i)$$

ist. Wir schreiben

(19)
$$\operatorname{Rat}_{k}(X) = \{ \alpha \in Z_{k}(X) \mid \alpha \sim 0 \}$$

Proposition 0.4. Die Menge $Rat_k(X)$ ist eine Untergruppe von $Z_k(X)$.

Beweis. Ist $\alpha, \beta \sim 0$ mit $\alpha = \sum_i \operatorname{div}_{W_i}(f_i)$ und $\beta = \sum_i \operatorname{div}_{W_i'}(f_i')$, so ist $-\alpha = \sum_i \operatorname{div}_{W_i}(f_i^{-1})$ and $p: X' \to X$ die kanonische Projektion. Dann gilt 0 und $\alpha + \beta = \sum_i \operatorname{div}_{W_i}(f_i) + \sum_i \operatorname{div}_{W'_i}(f'_i) \sim 0.$

Definition 0.5. Die Quotientengruppe $Z_k(X)/\text{Rat}_k(X)$ ist $A_k(X)$, die Gruppe der k-Zykelklassen. Es sei $A_*(X) = \bigoplus_k A_k(X)$

Proposition 0.5. Es sei X ein Schema und X_{red} sein reduziertes abgeschlossenes Unterschema. Dann ist $Z_k(X) = Z_k(X_{red})$ und $A_k(X) = A_k(X_{red})$.

Proposition 0.6. *Es sei* $X = X_1 \cup \cdots \cup X_r$ *eine Zerlegung von* X *in disjunkte Komponenten. Dann ist* $Z_k(X) = Z_k(X_1) \oplus \cdots \oplus Z_k(X_r)$ *und* $A_k(X) = A_k(X_1) \oplus \cdots \oplus A_k(X_r)$.

Proposition 0.7. *Es seien* $X_1, X_2 \subseteq X$ *abgeschlossenene Unterschemata von einem* Schema X. Dann ist die Sequenz

(20)
$$A_k(X_1 \cap X_2) \to A_k(X_1) \oplus A_k(X_2) \to A_k(X_1 \cup X_2) \to 0$$

exakt.

Beweis. Man beachte, daß für jedes irreduzible $Z \subseteq X_1 \cup X_2$ immer $Z \subseteq X_1$ oder $Z \subseteq X_2$ ist.

Eigentlicher Push-forward

Definition 0.6. *Es sei* $f: X \to Y$ *eine eigentliche Abbildung algebraischer Schemata.* Dann definiert f eine Abbildung $Z_k(X) \rightarrow Z_k(Y)$ gemäß folgender Vorschrift

$$(21) \qquad f_*V = \begin{cases} [k(V)\colon k(W)]W & \textit{für } W = f(V)\textit{ falls } \dim W = \dim V = k\\ 0 & \textit{falls } \dim f(V) \neq \dim V \end{cases}$$

für jede irreduzible k-dimensionale Varietät $V \in Z_k(X)$ und entsprechender Erweiterung durch Z–Linearität.

Proposition 0.8. Es seien $f: X \to Y$ und $g: Y \to Z$ eigentliche Abbildungen algebraischer Schemata. Dann ist $(g \circ f)_* = g_* \circ f_*$.

Proposition 0.9. Es sei $f: X \to Y$ eine eigentliche Abbildung algebraische Schemata. Dann ist $f_* \operatorname{Rat}_k(X) \subseteq \operatorname{Rat}_k(Y)$. Also induziert f_* eine Abbildung $f_* : A_k(X) \to A_k(Y)$.

Diese Behauptung folgt aus zwei Hauptpropositionen. Zunächst die erste Haupt-

Proposition 0.10. Es sei $f: X \to Y$ eine eigentliche, surjektive Abbildung von l-Varietäten. Weiter sei $\dim X = k+1$ und $\dim Y \le k$, sowie $r \in K(X)^*$. Dann ist

 $f_* \operatorname{div}_X(r) = 0$ **Lemma 0.6.** Es sei $f: X \to l$ eine eigentliche eindimensionale l-Varietät über einem

Körper l. Weiter sei $r \in K(X)^*$ eine rationale Funktion auf X. Dann ist mit einer Summe über die abgeschlossenen Punkte $P \in X$:

(23)
$$\operatorname{div}_{X}(r) = \sum_{P \in X} \nu_{P}(r)P = \sum_{P \in X} n_{P}P$$

und es gilt

(24)
$$\sum_{P \in X} n_P[k(P):l] = 0$$

Lemma 0.7. Es sei $f: X \to Y$ eine eigentliche Abbildung von l-Varietäten und $\dim X = k+1$ sowie $\dim Y = k$. Weiter sei $j: Y' = \operatorname{Spec}(K(Y)) \to Y$ die kanonische Abbildung des generischen

Punktes, eine flache Abbildung. Man habe das cartesische Diagramm

$$(25) X \stackrel{f'}{\longleftarrow} X' \\ f \bigvee_{i} f' \\ Y \stackrel{f}{\longleftarrow} Y'$$

Es ist dann X' eine eindimensionale, eigentliche K(Y)-Varietät. Weiterhin induzieren j und j' Abbildungen $j'^*: Z_k(X) \to Z_0(X')$ und $j^*: Z_k(Y) \to Z_0(X')$ $Z_0(Y')$, für die gilt

$$(26) f'_* j'^* \alpha = j^* f_* \alpha$$

für einen Zykel $\alpha \in Z_k(X)$. Die Abbildung $j^*: Z_k(Y) \to Z_0(Y')$ ist ein Isomorphismus. Schließlich ist für ein $r \in K(X)^*$ und sein Bild $r' \in K(X')^*$ unter der kanonischen Abbildung $K(X) \rightarrow K(X')$:

$$j^{\prime *}\operatorname{div}_{X}(r) = \operatorname{div}_{X^{\prime}}(r^{\prime})$$

Nun zur zweiten Hauptproposition:

Proposition 0.11. Es sei $f: X \to Y$ eine eigentliche, surjektive Abbildung von l-Varietäten. Weiter sei $\dim X = \dim Y = k+1$. Dann ist L = K(X) eine endliche Erweiterung von K = K(Y) und für $r \in K(X)^*$ gilt

(28)
$$f_* \operatorname{div}_X(r) = \operatorname{div}_Y \operatorname{Norm}_{[L:K]}(r)$$

Definition 0.7. Es sei $f: X \to Y$ eine Abbildung von integren Schemata und L =K(X) eine endliche Erweiterung von K = K(Y). Damit ist die Abbildung

$$Norm_{[L:K]}: L \to K$$

definiert. Gilt nun für jedes $r \in L^*$ sowie $y \in Y$ mit ht y = 1 und mit den endlich vielen $x_1, ..., x_m \in X$ mit $f(x_i) = y$ und ht $x_i = 1$, daß

(29)
$$\sum_{i=1}^{m} \nu_{x_i}(r)[k(x_i):k(y)] = \nu_y(\text{Norm}_{[L:K]}(r))$$

gilt, so sagen wir, daß $f: X \to Y$ die Eigenschaft (Nm) hat.

Proposition 0.12. *Es sei* $f: X \to Y$ *eine eigentliche surjektive Abbildung algebrais*cher Varietäten. die die Eigenschaft (N m) habe.

Mit L = K(X) sowie K = K(Y) gilt dann:

$$f_* \operatorname{div}_X(r) = \operatorname{div}_Y(\operatorname{Norm}_{[L:K]}(r))$$

für jedes $r \in L^*$.

Lemma 0.8. Es sei $f: X \to Y$ eine Schemaabbildung und $V = \operatorname{Spec}(\mathcal{O}_{Y,V})$ mit der kanonischen Abbildung $g: V \to Y$ für ein $y \in Y$. Weiter sei

$$X' = X \times_Y V$$

- (1) p induziert einen Homöomorphismus $p: X' \to f^{-1}(g(V))$. (2) Es ist für $x' \in X'$ und $x \in X$ mit p(x') = x auch $\mathcal{O}_{X,x} = \mathcal{O}_{X',x'}$
- Ist X integer, so ist auch X' integer und es ist K(X) = K(X') = L. Für ein $r \in L^*$ und x, x' wie oben mit $\dim \mathcal{O}_{X,x} = 1$ ist dann auch $v_x(r) = v_{x'}(r)$.

Lemma 0.9. Es sei $B \supseteq A$ eine endliche Erweiterung von Integritätsringen und L=Q(B), sowie $K=Q(\overline{A})$. Weiter sei (A,\mathfrak{m}) ein eindimensionaler lokaler Ring und $B_i=B_{\mathfrak{q}_i}$ für die $\mathfrak{q}_1,\ldots,\mathfrak{q}_m$ mit $\mathfrak{q}_i\cap A=\mathfrak{m}$. Dann ist für jedes $r\in L^*$ die Gleichung

(30)
$$\sum_{i=1}^{m} \nu_{B_i}(r)[k(B_i):k(A)] = \nu_A(\text{Norm}_{[L:K]}(r))$$

erfüllt.

Anders ausgedrückt: Die Abbildung $f : \operatorname{Spec}(B) \to \operatorname{Spec}(A)$ hat die Eigenschaft

Proposition 0.13. Es sei $f: \tilde{X} \to X$ die kanonische eigentliche Abbildung von der Normalisierung \tilde{X} einer Varietät X nach X. Dann ist f sogar eine endliche Abbildung und es gilt:

f hat die Eigenschaft (Nm).

Proposition 0.14. Es sei $f: X \to Y$ eine dominante Abbildung von Varietäten. Weiter seien $\tilde{X} \to X$ und $\tilde{Y} \to Y$ die Abbildungen der jeweiligen Normalisierungen. Dann existiert genau eine Abbildung g: $\tilde{X} \rightarrow \tilde{Y}$, so daß

(31)
$$\tilde{X} \xrightarrow{p} X \\
g \downarrow \qquad \qquad \downarrow f \\
\tilde{Y} \xrightarrow{q} Y$$

kommutiert. Ist f eigentlich, so ist auch g eigentlich. Hat g die Eigenschaft (Nm), so hat auch f die Eigenschaft (Nm).

Proposition 0.15. *Es sei* $f: X \to Y$ *eine surjektive, endliche, also auch eigentliche, Abbildung von Varietäten* X *und* Y. *Es sei* L = K(X) *und* K = K(Y). Dann hat f die Eigenschaft (Nm).

Lemma 0.10. Es sei $f: X \to Y$ eine eigentliche und surjektive Abbildung von normalen Varietäten mit dim $X = \dim Y$. Weiter sei L = K(X) und K = K(Y). Es sei $A = \mathcal{O}_{Y,y}$ für einen Punkt $y \in Y$ der Höhe 1 und es sei

$$V = \operatorname{Spec}(A)$$
.

Weiter sei C der ganze Abschluß von A in L und $X_V = X \times_Y V$. Dann ist $\dim \operatorname{Spec}(C) = 1$ und es existiert ein kommutatives Diagramm

$$(32) X_V \xrightarrow{g} \operatorname{Spec}(C)$$

in dem g ein Isomorphismus ist

Proposition 0.16. Es sei $f: X \to Y$ eine eigentliche und surjektive Abbildung von normalen Varietäten mit dim $X = \dim Y$. Es sei L = K(X) und K = K(Y) sowie Dann hat $f: X \to Y$ die Eigenschaft (Nm).

Algebraische Zykel von Schemata und Unterschemata

Definition 0.8. Es sei X ein algebraisches Schema und $X = X_1 \cup \cdots \cup X_r$ seine Zerlegung in irreduzible Komponenten. Dann ist $[X] \in Z_*(X)$ definiert als

$$[X] = \sum_{i=1}^{r} m_i [X_i]$$

wobei $m_i = \text{len } \mathcal{O}_{X,X_i}$ ist. Wir nennen m_i die geometrische Multiplizität von X_i in X. Gegebenenfalls schreiben wir auch [X] für das Bild von [X] unter $Z_*(X) \rightarrow A_*(X)$.

Bemerkung 0.1. *Ist* $X \subseteq Y$ *ein abgeschlossenes Unterschema, so schreiben wir auch* [X] für das Bild von [X] unter der Abbildung $Z_*(X) \rightarrow Z_*(Y)$. Ebenso stehe [X] auch für das Bild von [X] in $A_*(Y)$.

Bemerkung 0.2. *Ist X rein k-dimensional, also* dim $X_i = k$ *für alle i, so ist* $[X] \in$ $Z_k(X)$ und es ist $A_k(X) = Z_k(X) = \{\sum n_i[X_i] \mid n_i \in \mathbb{Z}\}.$

Bemerkung 0.3. Es sei $A = K[x_1, ..., x_n]$ und $X = \operatorname{Spec}(A/I)$ für ein Ideal $I \subseteq A$. Weiter sei $I \subseteq \mathfrak{p}_1 \cup \cdots \cup \mathfrak{p}_r$ die Zerlegung in irreduzible Komponenten, also minimale Primideale über I. Dann ist $m_i = \text{len}(A/I)_{\mathfrak{p}_i}$.

Flacher pull-back

Eine flache Abbildung $f: X \to Y$ sei hier stets eine flache Abbildung der Relativdimension n, wenn nicht ausdrücklich anders bestimmt. Beispiele solcher Abbildungen sind:

(1) Eine offene Einbettung $U \subseteq X$ (Relativdimension 0)

- (2) Die Projektion eines Vektorbündels $p:E\to X$ oder eine \mathbb{A}^n -Bündels oder eines projektiven Bündels $p:\mathbb{P}(\mathcal{E})\to X$.
- 3) Die Projektion $p: Y \times_k Z \to Y$ für ein algebraisches Schema $Z \to k$ der
- reinen Óimension *n*. 4) Ein dominanter Morphismus *f* : *X* → *C* von einer *n*–dimensionalen Varietät auf eine nichtsinguläre Kurve *C*. (Relativdimension *n* − 1).

Definition 0.9. Es sei $f: X \to Y$ ein flacher Schemamorphismus mit Relativdimension n. Weiter sei $V \subseteq Y$ eine Untervarietät. Dann sei

(34)
$$f^*(V) = [f^{-1}(V)].$$

Diese Festsetzung dehnt sich Z-linear zu einer Abbildung

$$(35) f^*: Z_k(Y) \to Z_{k+n}(X)$$

aus.

Lemma 0.11. Es sei $f: X \to Y$ ein flacher Schemamorphismus. Dann ist für jedes Unterschema $Z \subseteq Y$

(36)
$$f^*([Z]) = [f^{-1}(Z)].$$

Beweis. Man führt alles zurück auf len $B = \text{len}(B/\mathfrak{p}B)$ len A für $(B,\mathfrak{q})/(A,\mathfrak{p})$, flache Erweiterung lokaler Artinringe.

Korollar 0.1. Es seien $f: X \to Y$ und $g: Y \to Z$ flache Morphismen mit Relativdimension. Dann ist auch $g \circ f$ ein solcher, und es gilt

$$(g \circ f)^* = f^* \circ g^*$$

Proposition 0.17. Es sei

$$(38) X' \xrightarrow{g'} X$$

$$f' \downarrow \qquad \qquad \downarrow f$$

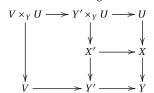
$$Y' \longrightarrow Y$$

ein cartesisches Quadrat mit g flach und f eigentlich. Dann ist g' flach und f' eigentlich und und es gilt

(39)
$$f'_{*}g'^{*}\alpha = g^{*}f_{*}\alpha$$

in Z_*Y' für alle $\alpha \in Z_*X$.

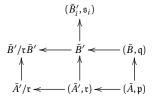
Beweis. Es ist oBdA Y affin und mit dem Diagramm



führt man alles auf X, Y, Y', X' affin zurück. Es ergibt sich:

 $\mathfrak{b} \subseteq \mathfrak{s}_1, \dots, \mathfrak{s}_m \longleftarrow B$ $A' \longleftarrow A$

mit $\mathfrak{a} = \mathfrak{p} \otimes_A A' = \mathfrak{p} A'$ und $\mathfrak{b} = \mathfrak{q} \otimes_B B' = \mathfrak{q} B'$. und A'/A flach. Tensoriere mit A/\mathfrak{p} und betrachte das Diagramm von Artinringen, das in den Ringen $(B'/\mathfrak{p} B')_{\mathfrak{s}_i} = \bar{B}'_i$ kulminiert:



Wir vereinfachen es noch zu ($\mathfrak{p}=0, A=k(\mathfrak{p})$)

Es sei $0 \to \mathfrak{b}_{i-1} \to \mathfrak{b}_i \to B/\mathfrak{q} \to 0$ eine Filtrierung aus e Sequenzen. Wir betrachten die Tensorierungen mit $-\otimes_A A'$. Zunächst ist (symbolisch geschrieben)

$$|B'/\mathfrak{q}B'| = \sum |B_i'/\mathfrak{q}B_i'| = \sum m_i |B_i'/\mathfrak{q}_i'| = \sum m_i s_i |A'/\mathfrak{p}'|$$

Also $|B \otimes_A A'| = |B'| = e|B'/\mathfrak{q}B'| = e\sum (s_i m_i)|A'/\mathfrak{p}'|$.

Andererseits entspricht $|B/\mathfrak{q}|=s|A/\mathfrak{p}|$ und $|A'/\mathfrak{p}A'|=n|A'/\mathfrak{p}'|$. Also $|B'/\mathfrak{q}B'|=sn|A'/\mathfrak{p}'|$. Also $esn=e\sum m_is_i$. Kürzt man e ergibt sich die gewünschte Beziehung

$$\sum s_i m_i = s n.$$

Theorem 0.1. Es sei $f: X \to Y$ ein flacher Morphismus der relativen Dimension n. Weiter sei $\alpha \in Z_k Y$ mit $\alpha \sim 0$, also rational äquivalent zu Null. Dann ist $f^*\alpha \sim 0$ in $Z_{k+n}X$.

Korollar 0.2. Die Abbildung $f^*: Z_*Y \to Z_*X$ induziert eine Abbildung $f^*: A_*Y \to A_*Y$

Lemma 0.12. Es sei X ein rein n-dimensionales Schema mit irreduziblen Komponenten X_1, \ldots, X_r und geometrischen Multiplizitäten m_1, \ldots, m_r . Weiter sei D ein effektiver Cartierdivisor auf X, also ein Unterschema, das lokal auf $U \subseteq X$, affin, offen, durch einen Nichtnullteiler $f \in \mathcal{O}_X(U)$ gegeben ist. Es sei $D_i = D \cap X_i$ die Restriktion von D auf X_i . Dann gilt

$$[D] = \sum_{i=1}^{r} m_i [D_i]$$

 $in Z_{n-1}(X)$.

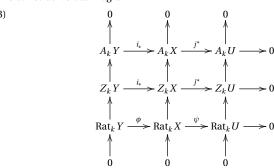
Eine exakte Sequenz

Proposition 0.18. Es sei $i: Y \to X$ die Inklusion eines abgeschlossenen Unterschemas Y von X. Weiter sei U = X - Y und $j: U \to X$ die entsprechende Inklusion. Dann ist die Sequenz

$$(42) A_k Y \xrightarrow{i_*} A_k X \xrightarrow{j^*} A_k U \to 0$$

exakt für alle k.

Beweis. Betrachte das Diagramm



wo in der untersten Sequenz die Beziehung $\psi \circ \phi = 0$ offensichtlich gilt.

Proposition 0.19. Es sei

$$(44) Y' \xrightarrow{i'} X' q \downarrow p V i Y Y$$

ein cartesisches Quadrat von Schemata, wo i eine abgeschlossene Immersion und p eigentlich ist. Weiter induziere p einen Isomorphismus $p': X'-Y' \to X-Y$. Dann ist die Sequenz

(45)
$$A_k Y' \xrightarrow{a} A_k Y \oplus A_k X' \xrightarrow{b} A_k X \to 0$$

$$mit \ a(\alpha) = (q_*(\alpha), -i_*'(\alpha)) \ und \ b(\alpha_1, \alpha_2) = i_* \alpha_1 + p_* \alpha_2 \ exakt.$$

Beweis. Betrachte für alles folgende das Diagramm

$$(46) A_{k}Y' \xrightarrow{i'_{*}} A_{k}X' \xrightarrow{j'^{*}} A_{k}U' \longrightarrow 0$$

$$\downarrow q_{*} \qquad \qquad \downarrow p_{*} \qquad \qquad \downarrow p'_{*} \qquad \qquad \downarrow p'_{*} \qquad \qquad \downarrow p'_{*} \qquad \qquad \downarrow p'_{*} \qquad \qquad \downarrow p_{*} \qquad \qquad \downarrow p'_{*} \qquad \qquad \downarrow$$

mit dem Isomorphismus $p': U' = X' - Y' \rightarrow X - Y = U$ und den Inklusionen $i: U \rightarrow Y$ und $i': U' \rightarrow Y'$

Ës bleibt noch die Identität ker $i_* = q_* \ker i_*'$. Die Inklusion $q_* \ker i_*' \subseteq \ker i_*$ ist klar. Sei also $\alpha \in A_k Y$ mit $i_*\alpha = 0$. Wir ziehen jetzt auch das Diagramm

$$(47) 0 \longrightarrow Z_k Y' \xrightarrow{i'_*} Z_k X' \xrightarrow{j'^*} Z_k U' \longrightarrow 0$$

$$q_* \downarrow \qquad \qquad \downarrow p_* \qquad \downarrow p'_*$$

$$0 \longrightarrow Z_k Y \xrightarrow{i_*} Z_k X \xrightarrow{j^*} Z_k U \longrightarrow 0$$

heran.

Affine Bündel

Ein Schema E zusammen mit einem Morphismus $p:E\to X$ heißt affines Bündel (vom Rang n), wenn es eine offene Überdeckung (U_a) von X mit offenen Mengen gibt, so daß die Abbildungen

$$(48) p^{-1}(U_{\alpha}) \xrightarrow{g_{\alpha}} U_{\alpha} \times \mathbb{A}^{n}$$

kommutieren und alle g_α Isomorphismen sind.

Proposition 0.20. Es sei $p: E \to X$ ein affines Bündel vom Rang n und X ein noethersches Schema. Dann ist der flache pull-back

$$(49) p^*: A_k X \to A_{k+n} E$$

surjektiv für alle k.

Weildivisoren und Cartierdivisoren

Es sei X ein Schema und **OuvAff**(X) die Kategorie der affinen offenen Teilmengen $U = \operatorname{Spec}(A)$ von X mit den durch die Abbildungen $A \to A_f$ induzierten offenen Immersionen als Morphismen.

Weiter sei für jeden $\mathop{\mathrm{Ring}}
olimits A$ die multiplikativ abgeschlossene Menge S_A gleich der

Menge der Nichtnullteiler von A, also der $f \in A$ mit $0 \to A \xrightarrow{f} A$ injektiv. Wir nennen dann $Q(A) = S_A^{-1}A$ den *Funktionenkörper* von A. Es gibt kanonische Abbildungen $Q(A) \to Q(A_g)$ für jedes $g \in A$.

Die Zuordnung $\mathcal{K}(U) = Q(\mathcal{O}_X(U))$ für jedes $U \subseteq X$, offen, affin, definiert also eine Prägarbe \mathcal{K}_X auf **OuvAff**(X), deren Garbifizierung eine Garbe auf X ist, die wir ebenfalls mit \mathcal{K}_X bezeichnen.

Es seien $\mathscr{O}_{X}^{*}(U)$ und $\mathscr{K}_{X}^{*}(U)$ die multiplikativen Gruppen, der von 0 verschiedenen Elemente von $\mathscr{O}_{X}(U)$ und $\mathscr{K}_{X}(U)$. Diese definieren eine exakte Sequenz von multiplikativen abelschen Garben

$$(50) 1 \to \mathcal{O}_X^* \to \mathcal{K}_X^* \to \mathcal{D} \to 1$$

Definition 0.10. *Es sei* X *ein Schema. Dann ist* $\Gamma(X, \mathcal{D}) = \text{CaDiv } X$ *die* (abelsche) *Gruppe der* Cartier–Divisoren von X.

Ein Cartier–Divisor D kann also als Familie (f_i,U_i) mit einer offenen Überdeckung $\bigcup_i U_i = X$ und $f_i \in \mathcal{K}_X^*(U_i)$ angesehen werden, für die $g_{ij} = f_i^{-1} f_j \in \mathcal{O}_{U_i}^*(U_{ij})$ ist, mit $U_{ij} = U_i \cap U_j$. Die Summe zweier Cartierdivisoren $D = (f_i,U_i)$ und $D' = (f_i',U_i)$ ist $D + D' = (f_if_i',U_i)$, der inverse Cartierdivisor -D ist (f_i^{-1},U_i) .

Definition 0.11. Es sei X ein Schema. Ein Cartier–Divisor der Form (f,X) mit $f \in \mathcal{K}_X^*(X)$ heißt Hauptdivisor, geschrieben $\operatorname{div}(f) = (f)$.

Proposition 0.21. *Die Hauptdivisoren bilden eine Untergruppe* CaDiv^h $X \subseteq \text{CaDiv } X$. **Definition 0.12.** *Sind* $D, D' \in \text{CaDiv } X$ *und ist* D - D' *ein Hauptdivisor, so heißen*

Definition 0.13. Die Quotientengruppe

D, D' linear äquivalent.

(51)
$$\operatorname{CaCl} X = \operatorname{CaDiv} X / \operatorname{CaDiv}^h X$$

 $ist\ die\ Gruppe\ der\ {\it Cartierdivisorenklassen}\ auf\ X.$

Definition 0.14. Es sei X ein Schema und $D=(f_i,U_i)$ ein Cartier–Divisor auf X. Weiter sei $V\subseteq X$ eine 1–kodimensionale Untervarietät von X. Dann ist

(52) $\nu_V(D) = \nu_{\mathcal{O}_{X,V}}(f_i)$

für ein i mit $U_i \cap V \neq \emptyset$. Da $f_i^{-1} f_j \in \mathcal{O}^*_{U_{ij}}(U_{ij})$ ist die Definition von dem gewählten i unabhängig.

Definition 0.15. Es sei X eine Varietät mit dim X = n. Dann ist

 $Div X = Z_{n-1}(X)$

die Gruppe der Weildivisoren von X und

(54)
$$\operatorname{Cl} X = A_{n-1}(X) = Z_{n-1}(X)/\operatorname{Rat}_{n-1}(X)$$

die Gruppe der Weildivisorenklassen von X.

Definition 0.16. Es sei X eine Varietät mit $\dim X = n$ und $D = (f_i, U_i)$ ein Cartier-divisor auf X. Dann ist

(55)
$$[D] = \sum_{V} \nu_{V}(D) V \in \text{Div} X = Z_{n-1}(X)$$

wobei V durch die 1-kodimensionalen Varietäten $V\subseteq X$ läuft, der zu D assoziierte Weil–Divisor.

Proposition 0.22. Es sei X eine Varietät mit $\dim X = n$. Dann definiert $D \mapsto [D]$ einen Gruppenhomomorphismus

(56)
$$\operatorname{CaDiv} X \to \operatorname{Div} X$$

von den Cartierdivisoren in die Weildivisoren.

Dabei wird CaDiv^h X nach Rat_{n-1}(X) abgebildet, denn es ist

$$[\operatorname{div}(f)] = \operatorname{div}_X(f)$$

mit dem weiter oben eingeführten ${\rm div}_X(f)\in {\rm Rat}_{n-1}(X)\subseteq Z_{n-1}(X)$. Man hat also auch eine induzierte Abbildung

(58)
$$\operatorname{CaCl} X \to \operatorname{Cl} X$$

Definition 0.17. Es sei X ein Schema und $D = (f_i, U_i) \in CaDiv X$ ein Cartierdivisor auf X. Dann ist

(59)
$$|D| = \sup_{\substack{V \subseteq X \\ V \text{ Varietät} \\ f_V \notin \mathcal{O}_v^*, \\ v \text{ }}} V \text{ wobei } f_V = f_i \text{ mit } U_i \cap V \neq \emptyset$$

 $der \, \text{Support von } \, D \, \, \text{in } \, X. \, \, Die \, Definition \, ist \, wegen \, f_i^{-1} \, f_j \in \mathcal{O}^*_{U_{ij}}(U_{ij}) \, \, unabhängig \, von \, \, der \, Wahl \, des \, jeweiligen \, i \, \, f\"{u}r \, V.$

Bemerkung 0.4. Auf U = X - |D| ist $\mathcal{O}_X(D)|_U \cong \mathcal{O}_U$. Damit existiert ein der $1 \in \mathcal{O}_U$ entsprechender trivialisierender Schnitt $s_D \in \mathcal{O}_X(D)(U)$.

Bemerkung 0.5. Wir können den zu einem Cartierdivisor D assoziierten Weildivisor [D] auch schreiben als

$$[D] = \sum_{V} \nu_V(D) V$$

wobei V jetzt nicht durch alle 1-kodimensionalen Varietäten $V\subseteq X$ läuft, sondern nur durch diejenigen mit $V\subseteq |D|$. Damit erkennen wir $[D]\in Z_{n-1}(|D|)$.

Neben der Zuordnung eines Weildivisors zu jedem Cartierdivisor auf einer Varietät X können wir auf einem beliebigen Schema X einem Cartierdivisor $D=(f_i,U_i)$ ein Linienbündel $\mathcal{O}_X(D)$ zuordnen.

Definition 0.18. Es sei X ein Schema und $D = (f_i, U_i)$ aus CaDiv X. Dann ist $\mathcal{O}_X(D)$ mit

(61)
$$\mathscr{O}_{X}(D)|_{U_{i}} = f_{i}^{-1}\mathscr{O}_{U_{i}} \subseteq \mathscr{K}_{X}|_{U_{i}}$$

ein Linienbündel zusammen mit einer Inklusion $\mathcal{O}_X(D) \subseteq \mathcal{K}_X$.

Bemerkung 0.6. Wir schreiben auch manchmal L(D) für $\mathcal{O}_X(D)$.

Es seien L, L_1, L_2 Linienbündel auf einem Schema X. Dann sind auch

$$L^{-1} = \mathcal{H} om_{\mathcal{O}_X}(L, \mathcal{O}_X) \text{ und } L_1 \otimes_{\mathcal{O}_X} L_2$$

Linienbündel auf X. Die erste Abbildung definiert dabei ein Inverses für die Multiplikation, die durch die zweite Abbildung gegeben wird. Dabei ist \mathcal{O}_X , als Linienbündel aufgefaßt, das neutrale Element.

Definition 0.19. Wir bezeichnen die Gruppe der Linienbündel auf einem Schema X mit $\mathbf{L}(X)$ und die Gruppe der Isomorphieklassen von Linienbündeln mit Pic X.

Proposition 0.23. Für ein Schema X ist Pic $X = H^1(X, \mathcal{O}_Y^*)$.

Für einen Cartierdivisor $D=(f_i,U_i)$ gibt es ein kanonisch zugeordnetes Element $c(D)\in H^1(X,\mathcal{O}_X^*)$. Dieses wird durch $U_{i_0i_1}\mapsto f_{i_0}^{-1}f_{i_1}$ als Element von $\check{H}^1((U_i),\mathcal{O}_X^*)$ gegeben.

Proposition 0.24. Es sei X ein beliebiges Schema. Die Abbildung $D \to \mathcal{O}_X(D)$ definiert einen Gruppenhomomorphismus CaDiv $X \to \mathbf{L}(X)$. Es ist also

$$\mathscr{O}_X(D) \otimes_{\mathscr{O}_X} \mathscr{O}_X(D') = \mathscr{O}_X(D+D')$$

(63)
$$\mathscr{O}_{X}(-D) = \mathscr{O}_{X}(D)^{-1}$$

Proposition 0.25. Es sei X ein Schema, D ein Cartierdivisor und $\mathcal{O}_X(D)$ das zugeordnete Linienbündel. Dann ist äquivalent

- (1) Es ist $\mathcal{O}_X(D) \cong \mathcal{O}_X$.
- (2) Es ist $D \in CaDiv^h X$, ein Hauptdivisor.

Es ist also $c(D)=0\in H^1(X,\mathcal{O}_X^*)$ genau für die Hauptdivisoren $D\in \operatorname{CaDiv}^hX$. Damit ist $D\to c(D)$ eine wohldefinierte und injektive Abbildung $\operatorname{CaCl} X\to H^1(X,\mathcal{O}_X^*)$. Weiterhin ergeben die beiden vorangehenden Propositionen eine injektive Abbildung $\operatorname{CaCl} X\to\operatorname{Pic} X$.

Proposition 0.26. Wir haben ein Diagramm

(64)
$$\operatorname{CaCl} X \xrightarrow{\beta} \operatorname{Pic} X$$

$$\downarrow^{\alpha} \qquad \qquad \qquad \downarrow^{\gamma}$$

$$H^{1}(X, \mathcal{O}^{*})$$

Dabei sind die Abbildungen α, β, γ die oben eingeführten, insbesondere ist $\alpha(D) = c(D)$. Die Abbildungen α und β sind injektiv, die Abbildung γ ist, wie oben bemerkt, ein Isomorphismus.

Proposition 0.27. *Ist X eine Varietät, so ist* $CaCl X \rightarrow Pic X$ *auch surjektiv, also ein Isomorphismus.*

Dies folgt, da für eine Varietät X die Garbe \mathcal{K}_X welk ist, aus der exakten Sequenz $0 \to \mathcal{O}_X^* \to \mathcal{K}_X^* \to \mathcal{D} \to 0$ und der zugehörigen langen exakten Kohomologiesequenz.

Definition 0.20. Es sei X ein beliebiges Schema und $D=(f_i,U_i)$ ein Cartierdivisor. Weiter sei $\mathcal{O}_X(D)$ das assoziierte Linienbündel $(f_i^{-1}\mathcal{O}_{U_i})$. Es sei Z=|D| der Support von D und U=X-Z, sowie $U_i'=U_i\cap U$. Es ist dann $f_i|_{U_i'}\in \mathscr{O}_X^*(U_i')$, also $1\in f_i^{-1}\mathcal{O}_{U_i'}\subseteq \mathscr{K}_X(U_i')$.

Die einzelnen $1=1_{U_i'}$ verkleben zu einem Schnitt $1\in \mathcal{O}_X(D)(U)\subseteq \mathcal{K}_X(U)$. Diesen nennen wir auch s_D .

Pseudodivisoren

Definition 0.21. *Es sei* X *ein* S*chema und* (L, Z, s) *ein* T*ripel bestehend aus einem* L*inienbündel* L *auf* X, *einer abgeschlossenen* T*eilmenge* $Z \subseteq X$ *und einem nirgends verschwindenden* S*chnitt* $s \in L(X-Z)$.

Dann heißt (L, Z, s) Pseudodivisor auf X. Es heißen L das Linienbündel, Z der Support und s der Schnitt des Pseudodivisors.

Definition 0.22. Zwei Pseudodivisoren (L,Z,s) und (L',Z',s') auf einem Schema X heißen äquivalent, wenn Z=Z' ist und ein \mathcal{O}_X -Isomorphismus $\sigma:L\to L'$ existiert, so $da\beta \, \sigma_{X-Z}(s)=s'$ ist.

Definition 0.23. Es sei D ein Cartier–Divisor auf einem Schema X. Weiter sei $\mathcal{O}_X(D)$ sein zugehöriges Linienbündel, |D| sein Support und $s_D \in \mathcal{O}_X(D)(X-|D|)$ sein assoziierter trivialisierender Schnitt. Dann ist $(\mathcal{O}_X(D),|D|,s_D)$ der zu D gehörige Pseudodivisor.

Definition 0.24. Ein Pseudodivisor (L, Z, s) wird von einem Cartier–Divisor D repräsentiert, falls

- (1) $|D| \subseteq Z$ gilt.
- (2) Ein Isomorphismus σ : O_X(D) → L existiert, der auf X − Z den Schnitt s_D in s überführt.

Proposition 0.28. Es sei X eine Varietät und (L,Z,s) ein Pseudodivisor auf X. Dann wird (L,Z,s) durch einen Cartier–Divisor $D \in \operatorname{CaDiv} X$ repräsentiert. Es gilt

- (1) Ist $Z \neq X$, so ist D als Element von CaDiv X eindeutig bestimmt.
- (2) Ist Z = X, so ist D als Element von CaCl X, also als Divisorenklasse eindeutig bestimmt.

Die folgende Definition ist von zentraler Bedeutung, da durch sie später für eine k-Untervarietät $j:V\subseteq X$ eines beliebigen Schemas X und einen Pseudodivisor D auf X, der Schnitt $D\cdot [V]=[j^*D]\in A_{k-1}(|D|\cap V)$ eingeführt werden wird.

Definition 0.25. Es sei D ein Pseudodivisor auf einer n-dimensionalen Varietät X mit Support Z = |D|.

Dann definiert man die zugehörige Weildivisorenklasse

$$[D] \in A_{n-1}(|D|)$$

wie folgt:

(66)

Es sei \tilde{D} ein Cartierdivisor auf X, der D repräsentiert.

(1) Ist $Z \neq X$, so ist \tilde{D} als Element von CaDiv X eindeutig bestimmt. Wir setzen dann

$$[D] = [\widetilde{D}]$$

Dabei ist $[\widetilde{D}]$ der zu \widetilde{D} assoziierte Weildivisor aufgefaßt als Zykel in $Z_{n-1}(|\widetilde{D}|)$, also

$$[\widetilde{D}] = \sum_{V} \operatorname{ord}_{V}(\widetilde{D})[V] \in Z_{n-1}(|\widetilde{D}|) = A_{n-1}(|\widetilde{D}|)$$

wobei über die irreduziblen Komponenten V von $|\tilde{D}|$ summiert wird. Da $|\tilde{D}| \subseteq |D| = Z$ erhalten wir ein Bild in $Z_{n-1}(|D|) = A_{n-1}(|D|)$

(2) Ist Z = X, so ist \widetilde{D} als Element von CaCl X eindeutig bestimmt, also für einen repräsentierenden Divisor \widetilde{D} ist $[\widetilde{D}] \in Z_{n-1}(X)$ bis auf Elemente von $\operatorname{Rat}_{n-1}(X)$ eindeutig bestimmt. Damit ist $[\widetilde{D}]$ in $A_{n-1}(X) = A_{n-1}(|D|)$ eindeutig festgelegt.

Definition 0.26. *Es seien* D = (L, Z, s) *und* D' = (L', Z', s') *zwei Pseudodivisoren* auf einem Schema X.

Dann sei

(67)
$$D + D' = (L \otimes_{\mathcal{O}_X} L', Z \cup Z', s \otimes s')$$

(68)
$$-D = (L^{-1}, Z, s^{-1})$$

Proposition 0.29. Für ein festes $Z \subseteq X$ bilden die Pseudodivisoren D mit supp D =Z eine abelsche Gruppe.

Definition 0.27. *Es sei* $f: X' \to X$ *ein Schemamorphismus und* D = (L, Z, s) *ein* Pseudodivisor auf X. Dann ist $f^*D = (f^*L, f^{-1}(Z), f^*(s))$ der pull-back von D auf X'.

Proposition 0.30. Für $g: X'' \to X'$ und $f: X' \to X$ sowie einen Pseudodivisor D aufX gilt

(69)
$$g^* f^*(D) = (f \circ g)^*(D)$$

Weiterhin gilt für Pseudodivisoren D, D' auf X, daß

(70)
$$f^*(D+D') = f^*D + f^*D'$$

mit der oben eingeführten Addition von Pseudodivisoren.

Schnitte mit Divisoren

Definition 0.28. Es sei D ein Pseudodivisor auf einem Schema X und V eine kdimensionale Untervarietät von X mit Einbettung $j:V\to X$. Dann ist j^*D ein Pseudodivisor auf V $mit | j^*D |= V \cap |D|$. Dann sei

(71)
$$D \cdot [V] = D \cdot V = [j^*D] \in A_{k-1}(V \cap |D|)$$

Bemerkung 0.7. Ist D ein Cartier–Divisor auf X, so kann man $D \cdot [V]$ auch folgendermaßen konstruieren: Ist $|D| \not\supseteq V$, so ist j^*D ein Cartierdivisor auf V. Man bilde den zu j*D assoziierten Weildivisor in $Z_{k-1}(|D|\cap V)$ und nenne sein Bild in $A_{k-1}(|D|\cap V)$ dann $D\cdot [V]$.

Ist $|D| \supseteq V$, so wähle einen Cartier-Divisor C auf V, so daß $\mathcal{O}_V(C) \cong j^* \mathcal{O}_X(D)$ ist. Dann sei $D \cdot [V]$ das Bild des zu C assoziierten Weildivisors [C] aus $Z_{k-1}(V)$ in $A_{k-1}(V)$. Der Divisor C ist nur bis auf einen Hauptdivisor bestimmt, aber sein Bild $in A_{k-1}(V)$ ist eindeutig.

Bemerkung 0.8. Wir nennen $D \cdot [V]$ auch das Bild von $D \cdot [V]$ in jedem $A_{k-1}(Y)$ für jedes abgeschlossene Unterschema $Y \subseteq X$ mit $V \cap |D| \subseteq Y$.

Bemerkung 0.9. Ist für ein Schema X das Linienbündel $\mathcal{O}_X(D)$ auf |D| trivial, so kann man sogar eine Abbildung $Z_k(X) \to Z_{k-1}(|D|)$ konstruieren. Man setze für $j: V \to X$ dann $D \cdot V = [j*D]$ falls $V \nsubseteq |D|$ und $D \cdot V = 0$, falls $V \subseteq |D|$. Im letzteren Fall würde die explizite Konstruktion von oben die Wahl eines Cartier–Divisors C auf V verlangen, für den $\mathcal{O}_V(C) = j^* \mathcal{O}_X(D)$ ist. Da $j^* \mathcal{O}_X(D)$ wegen $j(V) \subseteq |D|$ und der Annahme vom Anfang trivial ist, muß auch $\mathcal{O}_V(C) = \mathcal{O}_V$ sein. Es ist dann sinnvoll

 $D\cdot V=0$ zu setzen. Der Fall $\mathscr{O}_X(D)$ auf |D| trivial tritt zum Beispiel für (global) prinzipale Cartierdivisoren D auf, diese werden unter der kanonische Abbildung Ca $\mathrm{Div}\, X \to \mathrm{Pic}\, X$ auf die Isomorphieklasse des trivialen Bündels \mathcal{O}_X abgebildet.

Definition 0.29. *Es sei* $\alpha = \sum_{V} n_{V} V \in Z_{k}(X)$ *ein algebraischer Zykel im Schema* X. Dann ist $|\alpha| = \bigcup_{n_V \neq 0} V$, der Support von α .

Definition 0.30. Ist
$$\alpha = \sum_V n_V \ V \in Z_k(X)$$
 ein algebraischer Zykel, so definieren wir (72)
$$D \cdot \alpha = \sum_V n_V \ (D \cdot [V]) \in A_{k-1}(|D| \cap |\alpha|)$$

Bemerkung 0.10. Für jedes abgeschlossene Unterschema $Y \subseteq X$ mit $|D| \cap |\alpha| \subseteq Y \subseteq X$ sei $D \cdot \alpha$ auch das Bild von $D \cdot \alpha \in A_{k-1}(|D| \cap |\alpha|)$ unter $A_{k-1}(|D| \cap |\alpha|) \rightarrow A_{k-1}(Y)$.

Proposition 0.31.

a) Es sei D ein Pseudodivisor auf X und $\alpha, \alpha' \in Z_k(X)$. Dann ist

(73)
$$D \cdot (\alpha + \alpha') = D \cdot \alpha + D \cdot \alpha'$$

 $in A_{k-1}(|D| \cap (|\alpha| \cup |\alpha'|)).$

Es seien D, D' *Pseudodivisoren auf* X *und* $\alpha \in Z_k(X)$. *Dann ist*

$$(D+D')\cdot \alpha = D\cdot \alpha + D'\cdot \alpha$$

 $in A_{k-1}((|D| \cup |D'|) \cap |\alpha|)$

Es sei D ein Pseudodivisor auf X und $f: X' \to X$ ein eigentlicher Schemamorphismus, $\alpha \in Z_k(X')$ und

$$g: f^{-1}(|D|) \cap |\alpha| \rightarrow |D| \cap f(|\alpha|).$$

Dann ist

(74)

(75)

(76)

$$g_*(f^*D \cdot \alpha) = D \cdot f_*\alpha$$

 $in A_{k-1}(|D| \cap f(|\alpha|)).$

Es sei D ein Pseudodivisor auf X und $f: X' \to X$ ein flacher Schemamorphismus mit Relativdimension n. Weiter sei $\alpha \in Z_k(X)$ und

$$g: f^{-1}(|D| \cap |\alpha|) \rightarrow |D| \cap |\alpha|.$$

Dann ist:

$$f^*(D) \cdot f^*\alpha = g^*(D \cdot \alpha)$$

 $in A_{k+n-1}(f^{-1}(|D|) \cap |\alpha|)).$

Ist D ein Pseudodivisor auf X mit trivialem Linienbündel L_D auf X und $\alpha \in Z_k(X)$, dann ist

$$(77) D \cdot \alpha =$$

 $in A_{k-1}(|\alpha|).$

Wir betrachten für die beiden folgenden Lemmata cartesische Quadrate

$$(78) X \stackrel{f'}{\longleftarrow} X \\ f \downarrow \qquad \qquad \downarrow \\ Y \stackrel{f}{\longleftarrow} Y$$

Lemma 0.13. Es sei $f: X \to Y$ eine eigentliche Abbildung und es existiere ein überdeckendes System von cartesischen Quadraten wie oben. Weiter sei für jedes von diesen und für jedes D, Pseudodivisor auf Y' und $\alpha \in Z_k(X')$:

(79)
$$f'_{\star}(f^{\prime *}D \cdot \alpha) = D \cdot f'_{\star}\alpha$$

Dann gilt die Aussage c) der vorigen Proposition für $f: X \to Y$.

Beweis. Es ist

$$\begin{split} j^*(f_*(f^*D \cdot \alpha)) &= f_*' j'^*(f^*D \cdot \alpha) = f_*'(j'^*f^*D \cdot j'^*\alpha) = \\ &= f_*'(f'^*j^*D \cdot j'^*\alpha) = j^*D \cdot f_*' j'^*\alpha = j^*D \cdot j^*f_*\alpha = j^*(D \cdot f_*\alpha) \end{split}$$

Da die $f': X' \to Y'$ eine Überdeckung von $f: X \to Y$ darstellen, gilt die Aussage c) für f unter der Annahme, daß sie für alle f' glt.

Lemma 0.14. Es sei $f: X \to Y$ eine flache Abbildung mit Relativdimension n und es existiere ein überdeckendes System von cartesischen Quadraten wie oben. Weiter sei für jedes von diesen und für jedes D, Pseudodivisor auf Y' und $\alpha \in Z_k(Y')$:

$$f'^*D \cdot f'^*\alpha = f'^*(D \cdot \alpha)$$

Dann gilt die Aussage d) der vorigen Proposition für $f: X \to Y$.

Beweis. Es ist

$$\begin{split} j'^*(f^*D \cdot f^*\alpha) &= j'^*f^*D \cdot j'^*f^*\alpha = f'^*j^*D \cdot f'^*j^*\alpha = \\ &= f'^*(j^*D \cdot j^*\alpha) = f'^*j^*(D \cdot \alpha) = j'^*f^*(D \cdot \alpha) \end{split}$$

Da die $f': X' \to Y'$ eine Überdeckung von $f: X \to Y$ darstellen, gilt die Aussage d), falls sie für alle f' gilt.

Lemma 0.15. Es sei $f: X \to Y$ ein flacher Morphismus mit Relativdimension n. Weiter sei D ein effektiver Cartierdivisor auf Y. Dann ist

(81)
$$[f^*D] = [f^{-1}(D)] = f^*[D]$$

Beweis. Man habe das Quadrat

$$X \stackrel{j'}{\longleftarrow} U$$

$$f \downarrow \qquad \qquad \downarrow f'$$

$$Y \stackrel{f'}{\longleftarrow} V$$

mit $V = \operatorname{Spec}(A)$ und $U = \operatorname{Spec}(B)$, offen. Es sei D auf V gegeben als (a) mit einem Nichtnullteiler $a \in A$. Dann ist auch $f^*D|_U = (a)$ mit a aufgefaßt als Element von B. Wegen $0 \to A \xrightarrow{\cdot a} A$ und der exakten Tensorierung $-\otimes_A B$ ist a auch in B Nichtnullteiler. Es ist also

$$[f'^*D] = [\operatorname{Spec}(B/aB)] = [\operatorname{Spec}(B \otimes A/a)] = [f'^{-1}D] = f'^*[D]$$

Man nehme nun im folgenden an, daß die Aussage des Lemmas für f eine offene Inklusion schon richtig sei.

$$j'^*[f^*D] = [j'^*f^*D] = [f'^*j^*D] = f'^*[j^*D] = f'^*[j^{-1}D] = f'^*j^*[D] = f'^*[j^{-1}D] = f'^*[j^{-1}$$

Da U, V allgemein gewählt waren, folgt $[f^*D] = [f^{-1}D] = f^*[D]$.

Lemma 0.16. Es sei $f: X \to V$ ein flacher Morphismus mit Relativdimension n $und\ V\ eine\ Variet\"{at}.\ Weiter\ sei\ D\ ein\ effektiver\ Cartierdivisor\ auf\ V\ und\ es\ sei$

$$[X] = \sum l_i [X_i]$$

 $die Zerlegung in irreduzible Komponenten, notwendig gleicher Dimension <math>\dim V + n$.

(82)
$$f^*D \cdot f^*[V] = [f^*D] = [f^{-1}D] = f^*[D] = f^*(D \cdot [V])$$

Beweis. Es ist

$$\begin{split} f^*D \cdot f^*[V] &= f^*D \cdot [X] = f^*D \cdot (\sum_i l_i[X_i]) = \\ &= \sum_i l_i (f^*D \cdot [X_i]) = \sum_i l_i [f^*D \cap X_i] = \\ &= [f^*D \cap X] = [f^*D] = [f^{-1}(D)] = f^*[D] = f^*(D \cdot [V]) \end{split}$$

Nun schließlich zum Beweis von d):

Beweis. Man habe im allgemeinen Fall das cartesische Quadrat

$$X \stackrel{j'}{\longleftarrow} f^{-1}(V)$$

$$f \bigvee_{f} \bigvee_{i} f'$$

$$Y \stackrel{f}{\longleftarrow} V$$

wobei man durch weitere Lokalisierung und Ausnutzen der Additivität in ${\cal D}$ annehmen kann, daß D auf Y ein effektiver Cartierdivisor ist. Dann gilt mit $\tilde{D} = j^*D$:

$$\begin{split} f^*(D) \cdot f^*[V] &= f^*(D) \cdot f^*j_*[V] = f^*(D) \cdot j_*' f'^*[V] = \\ &= j_*'(j'^*f^*(D) \cdot f'^*[V]) = j_*'(f'^*j^*(D) \cdot f'^*[V]) = \\ &= j_*'(f'^*\tilde{D} \cdot f'^*[V]) = j_*' f'^*(\tilde{D} \cdot [V]) = \\ &= f^*j_*(j^*D \cdot [V]) = f^*(D \cdot j_*[V]) = f^*(D \cdot [V]) \end{split}$$

Gerstenhaber-Algebra

Es sei A eine affine k-Algebra und $I \subseteq A$ ein Ideal. Die Aufblasung von A[T] in (T, I) ist

$$B = A[T, WT, WI] = A[T] \oplus (TA, I)W \oplus (T^2A, TI, I^2)W^2 \oplus \cdots$$

Die Gerstenhaber-Algebra B° ist

$$B^\circ=B_{(WT)}=A[T,T^{-1}I]=\cdots\oplus T^dA\oplus\cdots\oplus TA\oplus A\oplus T^{-1}I\oplus T^{-2}I^2\oplus\cdots$$

Es ist $B_0=B/TB$ gleich

$$B/TB = A \oplus (TA+I)W \oplus (T^2A+TI+I^2)W^2 \oplus \cdots$$

denn man hat (W^2 -Term als Beispiel, links A[T]-, rechts A-Module):

$$(T^2A, TI, I^2)/(T^3A, T^2I, TI^2) = (T^2A + TI + I^2)$$

Also $B_0 = B/TB = S[T]$ mit

$$S = A \oplus I \oplus I^2 \oplus \cdots$$

Damit zerfällt proj(B/TB) in proj(S) und Spec(S).

Tensoriert man weiter mit $-\otimes_A A/I$, so entsteht

$$B'_0 = A/I \oplus (TA/I + I/I^2)W \oplus (T^2A/I + TI/I^2 + I^2/I^3)W^2 \oplus \cdots$$

Dieses $B'_0 = S'[T]$ zerfällt in proj(S') und Spec $(S') = C_I A$, den *Normalkegel von A über I*.

$$S' = A/I \oplus I/I^2 \oplus I^2/I^3 \oplus \cdots$$

Der Ring S' ist zugleich auch B°/TB° also die Faser von B° über T=0. Die übrigen Fasern ergeben sich durch $B^\circ[T^{-1}]=A[T,T^{-1}]$ als A.

Grassmann-Varietäten

Es sei $V=K^n$ für einen Körper K und $(0)=V_0\subseteq V_1\subseteq \cdots\subseteq V_n=V$ eine echt aufsteigende Filtrierung. Für ein $K^k\cong \Lambda\subseteq V$ seien a_i mit $i=1,\ldots,k$ durch

$$\dim(V_{i+n-k-a_i}\cap\Lambda)=i$$

festgelegt.

Schreibt man Λ als Repräsentant einer $\operatorname{GL}(k,K)$ -Bahn von $K^{k\times n}$ so hat man für die Λ zu einem System (a_i) die allgemeine Matrixdarstellung nach Durchführung einer Zeilenreduktion:

	n	:	$^{k+n-k-}_{a_k}$:	$3+n-k-a_3$:	${\overset{2+n-k-}{a_2}}$:	$_{a_{1}}^{1+n-k-}$	$n{-}k{-}$ a_1	:
1	0	:	0	:	0	:	0	:	1	*	:
2	0	:	0	:	0	:	1	:	0	*	:
3	0	:	0	:	1	:	0	:	0	*	:
k	0	:	1	:	0	:	0	:	0	*	:

Es ist $n-k\geqslant a_1\geqslant a_2\geqslant \cdots \geqslant a_k\geqslant 0$ und alle möglichen Kombinationen von (a_i) können für geeignete Λ auftreten. Die Gesamtheit der $\Lambda\subseteq V$ bildet die *Grassmann-Varietät G(k, n)*. Es ist

$$\dim G(k,n) = k(n-k)$$

und die Gesamtheit der Λ zu einem System a_i bildet einen affinen Schubert-Zykel Σ_{a_1,\dots,a_k} . Er hat die Dimension

$$\dim \Sigma_{a_i} = k(n-k) - |(a_i)|.$$

für $|(a_i)| = \sum a_i$ wie man aus obigem Matrixschema durch Abzählen der freien Koeffizienten (angedeutet durch *) erkennt.

Die Gesamtheit der $\Sigma_{(a_i)}$ bildet eine affine Stratifikation von G(k,n), also eine Basis von A(G(k,n)). Die Berechnung von $\sigma_{(a_i)} \cdot \sigma_{(b_i)}$ bildet den Inhalt des *Schubert-Kalkiils*

Kalküls. Er beruht auf drei Grundformeln: Der Beziehung für $|(a_i)| + |(b_i)| = k(n-k)$

(83)
$$\sigma_{(a_i)} \cdot \sigma_{(b_i)} = \begin{cases} 1 & \text{für } a_i + b_{k+1-i} = n-k \text{ für alle } i \\ 0 & \text{sonst} \end{cases}$$

Wir nennen (b_i) zu (a_i) komplementär, wenn $a_i + b_{k+1-i} = n-k$ ist. Der Formel von Pieri

(84)
$$\sigma_a \cdot \sigma_{(b_i)} = \sum_{\substack{|c| = |b| + a \\ b_i \leqslant c_i \leqslant b_{l-1}}} \sigma_{(c_i)}$$

Der Formel von Giambelli

(85)
$$\sigma_{(a_i)} = \det(\sigma_{a_i - i + j})_{\substack{1 \le i \le k \\ 1 \le i \le k}} =$$

$$=\det\begin{pmatrix} \sigma_{a_1} & \sigma_{a_1+1} & \sigma_{a_1+2} & \dots & \sigma_{a_1+k-1} \\ \sigma_{a_2-1} & \sigma_{a_2} & \sigma_{a_2+1} & \dots & \sigma_{a_2+k-2} \\ \sigma_{a_3-2} & \sigma_{a_3-1} & \sigma_{a_3} & \dots & \sigma_{a_3+k-3} \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ \sigma_{a_k-k+1} & \sigma_{a_k-k+2} & \sigma_{a_k-k+3} & \dots & \sigma_{a_k} \end{pmatrix}$$

Diese Formel kann aus der von Pieri durch Entwicklung der Determinante erhalten werden. (Es sei $\sigma_a=0$ für a<0). Im Detail:

$$\begin{split} [a_1,a_2,a_3,a_4,\ldots] &= [a_1][a_2,a_3,a_4,\ldots] \\ &- [a_2-1][a_1+1,a_3,a_4,\ldots] \\ &+ [a_3-2][a_1+1,a_2+1,a_4,\ldots] \\ &- [a_4-3][a_1+1,a_2+1,a_3+1,a_5,\ldots] + -\cdots \end{split}$$

durch Entwicklung der Giambelli-Matrix nach der ersten Spalte.

Durch eine kombinatorische Überlegung ergeben sich die folgenden Beziehungen:

$$[a_1][a_2, a_3, a_4, \ldots] = [a_1, a_2, a_3, \ldots] + [a_2 - 1][a_1 + 1, a_3, a_4, \ldots]_{2;a_2}$$

sowie

$$\begin{split} [a_2-1][a_1+1,a_3,a_4,\ldots] = & [a_2-1][a_1+1,a_3,a_4,\ldots]_{2;a_2} + \\ & + [a_3-2][a_1+1,a_2+1,a_4,\ldots]_{3;a_3} \end{split}$$

und

$$[a_3-2][a_1+1,a_2+1,a_4,\ldots] = [a_3-2][a_1+1,a_2+1,a_4,\ldots]_{3;a_3} + \\ + [a_4-3][a_1+1,a_2+1,a_3+1,a_5,\ldots]_{4;a_4}$$

und weiter

$$\begin{split} [a_4-3][a_1+1,a_2+1,a_3+1,a_5,\ldots] = \\ [a_4-3][a_1+1,a_2+1,a_3+1,a_5\ldots]_{4;a_4} + \\ + [a_5-4][a_1+1,a_2+1,a_3+1,a_4+1,a_6,\ldots]_{5;a_5} \end{split}$$

und so weiter bis zum Ende der Determinantenentwicklung. Dabei stehe $[a][b_1,b_2,b_3,\ldots]_{i;a_l}$ für die Verteilungen von a über $[b_1,b_2,b_3,\ldots]$ für

die b_i maximal bis a_i (einschließlich) aufgefüllt wird.