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Abstract

For the moduli scheme X+
ns(7)/Z[1/7] of elliptic curves with a certain level 7 struc-

ture an explicit description as a finite cover of P1
Z[1/7] is computed. To achieve this,

methods from computer–algebra (gröbner–bases and algorithms for computing with
fundamental domains of congruence subgroups of SL2(Z)) and algebraic geometry are
combined.

Using the explicit knowledge of the finite cover, a diophantine equation of Thue–
type is derived, which has as integral solutions 12 pairs of numbers describing 12 dif-
ferent Z[1/7]–integral points on X+

ns(7)/Z[1/7], that arise from certain elliptic curves.
The j–invariants of these curves are computed and it is checked if the curves have
complex–multiplication.

All but finitely many imaginary quadratic fields of class number one give rise to
Z[1/7]–integral points on Y+

ns (7). These are all different and correspond to elliptic
curves with complex multiplication. So finally the classical result that the number of
these fields is finite is recovered.
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1 Introduction

1.1 Preliminary remark
In this article methods of [4] are used to study the moduli scheme X+

ns(7) instead of the
moduli scheme X+

ns(5) considered there.
The goal is to give an explicit presentation of X+

ns(7) and then to find the Z[1/7]–integral
points of its open subscheme Y+

ns (7). Knowing these points allows us to give a new proof
of the finiteness of the number of fields Q(

√
−d) with class number h = 1 and d > 0.

1.2 Basic notions
Elliptic curves An elliptic curve E over a scheme S is given by a smooth proper map
E

p−→ S of relative dimension 1 and with geometrically connected fibers of genus 1 together
with a section O : S→ E with p◦O = idS

An elliptic curve E/S carries the structure of an abelian group scheme over S with the
section O playing the role of a zero in the abelian group E(S). As E is an abelian group
scheme, there exists a morphism [N] : E→ E, which is multiplication by the integer N. The
kernel of this morphism is the subgroup scheme of N–division points and shall be denoted
E[N] (N > 2). For its properties see [7, Theorem 2.3.1].

An elliptic curve E/S with a full level N–structure is a pair

(E/S,α : (Z/NZ)2 ∼−→ E[N](S)),

where the induced homomorphisms αs : (Z/NZ)2→ E[N](k(s)) are isomorphisms for all
s ∈ S.

Equivalently α can be regarded as giving an isomorphism of group schemes over S:
α : (Z/NZ)2×S ∼−→ E[N].

Elliptic curves with full level N–structures can be considered as a category with mor-
phisms

f : (E
p−→ S,α)→ (E ′

p′−→ S′,α′)

being morphisms f : E → E ′ and g : S→ S′ which fulfill p′ ◦ f = g ◦ p and f ◦α(w) =
α′(w)◦g.

If (E/S,α) together with a morphism g : S′ → S is given, there is a canonical level
N–structure α′ on the elliptic curve E ′/S′ = S′×S E/S′. It is α′(w) = g∗(α(w)) defined by
p′S(α

′(w)) = idS′ and pE(α′(w)) = α(w)◦g.
Taking all together, we have a morphism (E ′/S′,α′)→ (E/S,α) in the category of

elliptic curves with full N–structure. The pair (E ′/S′,α′) we call induced from (E/S,α) by
g.

Moduli schemes For elliptic curves (E/S,α) with full level N–structure (N > 3) for
which S is a Z[1/N]–scheme there exists a so called fine moduli scheme over Z[1/N].

In accordance with [7, Corollary 4.7.2] I call this scheme Y (N). It is a smooth affine
curve over Z[1/N].

The property of being a fine moduli scheme has the following meaning: There is a
universal elliptic curve with full N–structure over Y (N), which I call (E/Y (N),α). Now
for every elliptic curve (E/S,α) over a scheme S on which N is invertible, there is a unique
morphism g : S→ Y (N) and a commutative diagram

(E,α)∼= (S×Y (N) E,α′)

��

// (E,α)

��
S

g // Y (N)
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representing morphisms in the category of elliptic curves with N–structure. The isomor-
phism (E,α)∼= (E×Y (N) S,α′) is uniquely determined.

Using this property the scheme Y (N) is endowed with an operation

ρg : Y (N)→ Y (N)

of G = GL2(Z/NZ), defined over Z[1/N], which stems from the operation

ρg : (E/S,α) 7→ (E/S,α◦gt)

for a g ∈ G.
There is a complex–analytical isomorphism

Y (N)(C)∼= Γ(N)\H× (Z/NZ)∗ (1)

Therein H stands for the upper half plane {z ∈ C | ℑz > 0}, and Γ(N) is the group of
matrices from SL2(Z), congruent to

(
1 0
0 1

)
modulo N. This group Γ(N) is called principal

congruence subgroup of level N
The isomorphism (1) results from the modular interpretation of both sides of the iso-

morphism.
The term ”modular interpretation”, as used here, stands for associating a given set

canonically with a certain set of isomorphism classes of elliptic curves, possibly with an
additional structure, for example a full N–structure.

The left side of (1) corresponds to the isomorphism classes of elliptic curves with full
level N–structure over C. The right side of (1) has the modular interpretation

(τ,m) 7→ (C/(Z+ τZ),(α(1,0) = τ/N,α(0,1) = m/N)) = (Eτ/C,ατ,m)

where the elliptic curve Eτ/C is defined by the lattice Z+ τZ ⊂ C and ατ,m is a well–
defined full level N–structure on Eτ/C.

It is a theorem, that both sets are in one-to-one correspondance.
The group SL2(Z) operates canonically on H (

(
a b
c d

)
z= az+b

cz+d ). This operation gives rise
to an operation of SL2(Z/NZ) on Γ(N)\H. Additionally there is the canonical operation
of (Z/NZ)∗ on itself.

Together an operation ρ′g of GL2(Z/NZ) on Γ(N)\H× (Z/NZ)∗ results, which makes
the diagram

Y (N)(C)

ρg(C)
��

∼= // Γ(N)\H× (Z/NZ)∗

ρ′g
��

Y (N)(C)
∼= // Γ(N)\H× (Z/NZ)∗

commute.
The scheme Y (N) can be completed to a scheme X(N) over Z[1/N], in which it is

contained as an open subscheme. For details see [7, (8.6)] or [5, section 4.]. We will need
the following facts:

The operation of GL2(Z/NZ) on Y (N) extends itself to X(N).
There is a complex–analytical isomorphism

X(N)(C)∼= Γ(N)\H∗× (Z/NZ)∗,

where H∗ = H∪Q∪{∞} is the upper half plane together with the so called cusps.
The operation of SL2(Z) on H extends itself naturally on H∗, and therefore also the

operation of GL2(Z/NZ) extends on Γ(N)\H∗× (Z/NZ)∗.
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Again there is a commutative diagram expressing compatibility of operations:

Y (N)
∼= //

g

��

����
��

��
��

��
Γ(N)\H× (Z/NZ)∗

����
��

��
��

��

g

��

X(N)
∼= //

g

��

Γ(N)\H∗× (Z/NZ)∗

g

��

Y (N)
∼= //

����
��

��
��

��
Γ(N)\H× (Z/NZ)∗

����
��

��
��

��

X(N)
∼= // Γ(N)\H∗× (Z/NZ)∗

The classical modular curves The connection of the abovely used terminology with the
classical use of the term ”modular curve” is the following: Classically one starts from an
observation, that the points of a suitable quotient ΓH\H = Y (ΓH) are in one to one corre-
spondence with the isomorphism classes over C of elliptic curves carrying some additional
structure.

If the structure is a full level N–structure α with the extra condition, that

en(α(1,0),α(0,1)) = exp(2πi/N) = ζN

where en is the Weil pairing, then ΓH = Γ(N) and the quotient Γ(N)\H is called Y (N) and
its completion with the cusps added X(N). At first hand X(N) is defined over C, but by
suitable constructions one can get a model defined over Q(ζN). It is even true, that for
every congruence subgroup ΓH ⊆ SL2(Z) a model of ΓH\H over an algebraic number field
kΓH can be constructed ([10, 6.7]).

Now the model Y (N)/Q(ζN) introduced in the preceding paragraph is nothing else but
the base extension Y (N)Q(ζN ) of the modular scheme Y (N)/Z[1/N] as both have the same
modular interpretation of the sets Y (N)(K) for an algebraic number field K ⊇Q(ζN).

Quotients of moduli schemes Let a subgroup H ⊆ GL2(Z/NZ) be given. Then call Γ̃H
its preimage under GL2(Z)→ GL2(Z/NZ) and set ΓH = Γ̃H ∩SL2(Z). Now the quotient
schemes

Y (N)H

X(N)H

can be formed.
Their complex valued points are

Y (N)H(C)∼= ΓH\H× ((Z/NZ)∗/(detH)) (2)

X(N)H(C)∼= ΓH\H∗× ((Z/NZ)∗/(detH)) (3)

Definition 1.1 We now define a pre-H–structure on an elliptic curve E/S as H-orbit [α]H
of N–structures α : (Z/NZ)2 ∼−→ E[N](S) under the operation α 7→ α◦ht for a h ∈ H.

Then a H–structure on an elliptic curve E/S can be defined as follows
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Definition 1.2 A H–structure on E/S is given by a set [ακ]H of pre-H–structures on the
elliptic curves Eκ/Sκ, where (Sκ→ S)κ is an etale covering family of S and Eκ = E×S Sκ.
Furthermore it is required that for every κ1, κ2 there has to exist an etale covering family
(Sλκ1κ2 → Sκ1 ×S Sκ2) such that the pullbacks of [ακ1 ]H and [ακ2 ]H to Eλκ1κ2/Sλκ1κ2 agree
as pre-H-structures on Eλκ1κ2/Sλκ1κ2 .

One notes, that for S = spec(L), with L an algebraically closed field, a H–structure on
E/L is identical to a pre-H–structure.

Then the variety of points Y (N)H(L) for any algebraically closed field L with N ∈ L∗

parameterizes the set of elliptic curves (E/spec(L), [α]H) with H–structure. The scheme
Y (N)H is then called a coarse moduli scheme for elliptic curves with H–structure. A fine
moduli scheme for elliptic curves with H–structure does not exist in general.

The moduli schemes Y+
ns(p) and X+

ns(p) In what follows, we will consider specifically
the groups

H̄0
p(l) =

{(
a bl
b a

)
∈ GL2(Z/pZ)

}
∪
{(

a bl
−b −a

)
∈ GL2(Z/pZ)

}
(4)

l ∈ Z/pZ, l quadratic non-residue

It is det H̄0
p = (Z/pZ)∗ and therefore X(p)H̄0

p (C) ∼= Hp\H∗, where Hp shall be a short
notion for the group, that had to be called ΓH̄0

p
following the convention explicated in the

preceding paragraph.
Furthermore we write, following [4], Y+

ns (p) and X+
ns(p) for Y (p)H̄0

p and X(p)H̄0
p .

Now let K/Q be an imaginary–quadratic number field with associated elliptic curve
E(K)/C, defined by the period lattice OK , that is, the principal order in K. The j–invariant
of E(K) is equal to the j–invariant of the lattice OK , so non–isomorphic K give rise to
different j–invariants of the associated elliptic curves.

Definition 1.3 For an integer N and an elliptic curve E/C the image of End(E) in End(E[N](C))
is a subring of End(E[N](C)), which we will call BN(E).

Since now we write B(E) for Bp(E). Now the following holds:

Proposition 1.1 One can choose a fixed subring Rp,i ⊆Mat(2,Fp) in such a way, that for
all K, in which p is inert, B(E(K))=α◦Rp,i◦α−1 holds for suitable chosen full p–structures
α : (Z/pZ)2 ∼−→ E(K)[p](C) on E(K).

Generally, two p–structures, α1, α2 on an elliptic curve E satisfying

B(E) = α j ◦Rp,i ◦α−1
j

are related by α1 = α2 ◦ht with h ∈ H̄0
p .

In [5, section 1.] a generalization of this proposition is shown, but to be independent of this
reference, I give a shortened proof here: The p–division points E(K)[p](C) are 1

pOK/OK ∼=
OK/pOK ∼= Fp2 . They form a one dimensional Fp2–module.

Now the map ψ : End(E(K))→ End(E(K)[p](C)) corresponds to OK → EndFp2 (Fp2) =

Fp2 with z 7→ (w 7→ z̄w), wherein w ∈ Fp2 and z̄ is the image of z ∈ OK in OK/pOK = Fp2 .
Setting λ =

√
l with l a quadratic non–residue in Fp one has an Fp–basis (1,λ) of Fp2 .

Because of Fp2 ∼= E(K)[p](C) this basis can be regarded as giving a level p–structure α on
EK/C.

Now the image of ψ is equal to Fp2 ∼= EndFp2 (E(K)[p]). Using the basis (1,λ) of Fp2 ∼=
E(K)[p] one gets an imbedding EndFp2 (E(K)[p]) ∼= Fp2 ∼= R ⊆ F2×2

p . The ring R is Fp[u]

with u =
(

0 l
1 0

)
.
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One can put Rp,i =R by choosing α defined through the basis (1,λ) of Fp2 ∼=E(K)[p](C).
To prove the second part of the proposition note that the condition

gRg−1 = R (5)

with g ∈ GL2(Fp) expresses that the level p-structures α1 = α and α2 = α◦g both satisfy
the relation B(E) = α j ◦Rp,i ◦α−1

j from the proposition.
As R is the group of matrices

( p ql
q p

)
, which is visibly a subgroup of H̄0

p(l), the condition
(5) means, that g is from the normalizer of this subgroup. Now it is known (and can be
easily proved by a direct calculation with the equations expressing (5)), that this normalizer
is H̄0

p(l), so α1 and α2 are related by α1 = α2 ◦ g with g ∈ H̄0
p(l), which is equivalent

to gt ∈ H̄0
p(1/l). (See also [4, p.4], where the fact is mentioned that H̄0

p equals Nz, the
normalizer of a so called non–split Cartan subgroup of GL2(Fp). This explains the choice
of the name of the index in X+

ns(p)). QED.
Let in the following H stand for H̄0

p and L/Q for an algebraic extension field.
Now let E/L be an elliptic curve with [αB(E)]H an H–structure, fulfilling B(E) =αB(E)◦

Rp,i ◦α−1
B(E). Then (EC, [αB(E)]H) corresponds to a point rE : spec(C)→ Y+

ns (p).
Next consider an automorphism θ : C→ C and the corresponding cartesian square

E ′ = E×CC

��

fθ // E

��
C θ∗ // C

(6)

Now there is a corresponding [αB(E ′)]H for E ′ with B(E ′) = αB(E ′) ◦Rp,i ◦α−1
B(E ′). It fulfills

the relation
fθ ◦αB(E ′) = αB(E).

The pair (E ′C, [αB(E ′)]H) gives rise to a point rE ′ : spec(C)→ Y+
ns (p). Together the two

points satisfy
rE ◦θ∗ = rE ′ (7)

If one chooses θ fixing the subfield L, then E ′=E, B(E)=B(E ′), fθ = id and [αB(E)]H =

[αB(E ′)]H . So rE = rE ′ . Now Y+
ns (p) = spec(CH) and (7) can be expressed as θ◦ηE = ηE ′ ,

where ηE : CH → C and ηE ′ : CH → C are the ring homomorphisms corresponding to rE
and rE ′ . As ηE = ηE ′ and θ is arbitrary only subject to the condition to fix L, this entrains
ηE(CH)⊆ L. So the pair (E/L, [αB(E)]H) corresponds to a point Y+

ns (p)(L).
So we have, as E(K) is defined already over L =Q:

Proposition 1.2 We can interpret the B(E(K)) as H̄0
p–structures [α]H̄0

p
on the elliptic curves

E(K) which stem from imaginary quadratic fields K in which p is inert.
Any such curve (E(K)/C, [α]H̄0

p
) therefore gives rise to a point PK in Y+

ns (p)(Q).

In [5, 5.4.2] a stronger statement is shown:

Proposition 1.3 For K/Q, imaginary quadratic with class number 1 in OK , the point PK
stems from a point P′K in Y+

ns (Z[1/p]).

The proof there goes as follows: The point PK corresponds to a morphims η : CH → C,
where spec(C) = Y (p). The rings C and CH are integral over the subring Z[1/p, j] and
η( j) is equal to the classical j–invariant jK of E(K) over C. But in the special case of K
imaginary quadratic and of class number one, this jK is in Z. So first, η(CH) is integral
over Z[1/p] and secondly η(CH)⊆Q holds because of the previous proposition. Together
η(CH) = Z[1/p] follows. QED.
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1.3 Purpose of this article
In this article we will single out the case p = 7 and settle some questions that remained
open in [5, section 6.].

Especially we study the covering

π : X+
ns(7)→ X(1) (8)

over Z[1/7], where X(1) shall stand for X(7)GL2(Z/7Z), which corresponds to the coarse
moduli scheme for elliptic curves without additional structure. The map π corresponds,
interpreted modularly, to ”forgetting” the H̄0

7 –structure.
The scheme X(1) is exactly known:

Proposition 1.4 There is an isomorphism: X(1)∼= P1
Z[1/7].

Going over to complex–valued points, and restricting to Y (1) def
= Y (7)GL2(Z/7Z), this iso-

morphism maps an elliptic curve E/C to its j–invariant.
Furthermore the following is true:

Proposition 1.5 There is an isomorphisms κ : X+
ns(7)∼= P1

Z[1/7] of Z[1/7]–schemes.

For reasons of space, I can only sketch the proof given in [5, section 6.3]: First one uses
that X+

ns(7) is projective over Z[1/7] together with the fact that X+
ns(7)Q is isomorphic to P1

Q
to conclude that for every t ∈ spec(Z[1/7]) there is an isomorphism X+

ns(7)t
∼= P1

k(t). For
this step the Riemann–Roch theorem and the semicontinuity theorems of cohomology are
used.

In a second step the existence of a section s : spec(Z[1/7])→ X+
ns(7) is used to construct

the line bundle L = (ker(OX+
ns(7)→ s∗OZ[1/7]))

−1 on X+
ns(7). Then two everywhere gener-

ating sections T0,T1 of this bundle are proven to exist. They give a morphism κ : X+
ns(7)→

P1
Z[1/7] over Z[1/7] which is an isomorphism. QED.

Now in [5] the question is raised, if κ can be so chosen that the covering P1
Z[1/7] →

P1
Z[1/7] induced from (8) can be described in a certain, explicit way. We will answer this

question in the affirmative.
Following that, there is the question to find the solutions of a certain diophantic equation

of Thue–type, that originates from the explicit description of (8).
Thanks to newer results in this field we can determine all solutions with the help of

computer–algebra systems (MAGMA, KASH). As a consequence all points Y+
ns (7)(Z[1/7])

are explicitly known as pairs of integers.
Using the explicit description of (8) we can then compute the value of the j–invariant

belonging to each of these pairs.
There exist 12 points Y+

ns (7)(Z[1/7]), of which 6, as one can verify by looking up their
j-invariant in suitable tables, come from imaginary quadratic fields K of class number 1
and discriminant −d > −163 in the abovely discussed way. The remaining 6 belong to
elliptic curves, that either do not admit complex multiplication, or are not defined through
the principal order of an imaginary quadratic field or stem from the principal order in an
imaginary quadratic field, in which p = 7 is not inert.

An application to the problem of determining all number fields K =Q(
√
−d) with class

number 1 results from the observation, that for all those with discriminant −d <−163 the
prime number p = 7 is inert in K. These K would therefore produce additional Z[1/7]–
valued points on Y+

ns (7) (note, that the points must be different, because their j–invariant
would be different ).

As such points do not exist, it can be concluded (independently of former proofs of this
fact) that there are no further imaginary quadratic fields with class number one, apart from
those known with discriminant −d >−163.
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2 Algorithms
Let Γ and Γ1 be two level N congruence subgroups of SL2(Z) (that is, preimages of sub-
groups of SL2(Z/NZ) under the map SL2(Z)→ SL2(Z/NZ) given by A 7→ A mod N)
with Γ ⊆ Γ1, which are concretely given by their images Γ and Γ1 under SL2(Z) →
SL2(Z/NZ).

In this section I will specify algorithms to compute a fundamental domain for Γ\H∗,
to describe the covering Γ\H∗ → Γ1\H∗, and to analyze the ramification of Γ\H∗ →
SL2(Z)\H∗.

Before expounding the algorithms in detail, I want to explain some terms used in this
connexion. The reader who already has an idea, what to understand by a list as an abstract
datastructure, can skip the following subsection.

2.1 Lists
1. A list list of length n∈N0 with values from a set V is a mapping list : {i∈N | 1 6 i 6 n}→V .

A list of length 0 is called empty and will be represented by []. The expression list[i] shall
mean list(i) and is called i-th element of list.

2. On lists operate the functions append, map, select.
Now for a list list of length n with values in V and v from V , append(list,v) is a list of length
n+1, which on {i | 1 6 i 6 n} agrees with list and whose (n+1)-th element is v.
The function map(z 7→ g(z), list) returns for a given map g : V →W and a list list with values
in V a list list1 of the same length as list with list1[i] = g(list[i]).
The function select(z 7→ h(z), list) returns for a map h : V →{TRUE, FALSE} and a list list with
values in V and of length n a list list1 of length m, so that a bijection ψ : {1, . . . ,m}→ {i | 1 6
i 6 n,h(list[i]) = TRUE} exists for which ψ(i)< ψ( j) for i < j and list1[i] = list[ψ(i)] holds.

3. The expression [v1, . . . ,vn] shall represent the list list : {1, . . . ,n}→V with list[i] = vi.

4. By v ∈ list we mean ∃i : v = list[i].

5. It is first(list) def
= list[1] for all non–empty lists.

6. For a list list of length n the function rest is defined by rest(list) def
= [list[2], . . . , list[n]]. The

cases n = 1 and n = 0 are allowed and have the empty list as return value.

2.2 The algorithms
The first two functions are trivial auxiliary functions:

The function IN-SUBGROUP(M,Γ) answers the question, whether a matrix M from
SL2(Z) lies in the subgroup Γ⊆ SL2(Z) that is given by its image Γ in SL2(Z/NZ), con-
sidered as a set or list of matrices.

The function GET-INDEX(M,patches,Γ) determines an index i, such that M∼Γ patches[i]
holds, where M and Γ have the same meaning as in the previous paragraph and patches is a
list of matrices from SL2(Z). The notation M∼Γ patches[i] shall stand for M (patches[i])−1 ∈
Γ.

For technical reasons, which will become clear below, in case of M = patches[i] the
value −i is returned, the negative value serving merely as a ”marking” of the special case.

The value i of course need not be determined uniquely, but in the cases where GET-INDEX
is called, it will always be.
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IN-SUBGROUP(M,Γ)
� It is Γ⊆ SL2(Z/NZ).
� It is M ∈ SL2(Z).
if M mod N ∈ Γ

then
return TRUE

else
return FALSE

GET-INDEX(M,patches,Γ)
1 if M = patches[i]
2 then return −i
3 elseif IN-SUBGROUP(M(patches[i])−1,Γ)
4 then return i
5 else return NIL

2.2.1 Computation of a fundamental domain

The following algorithm computes a fundamental domain FΓ for Γ\H∗. Additionally we
require that FΓ shall be connected.

An algorithm for computing such a FΓ can be found in [11], the algorithm delineated
below is a simplified version of the method described in that article and pays no consider-
ation to a good graphical representability of FΓ.

For use further below the following terms are useful:

Notation 2.1 With F shall be meant the closure of a fundamental domain of SL2(Z)\H∗
that is given by {z ∈ H | |z|> 1,− 1

2 6 ℜz 6 1
2}∪{∞}.

Notation 2.2 With T, T−1, S shall be denoted the matrices
(

1 1
0 1

)
,
(

1 −1
0 1

)
,
(

0 −1
1 0

)
from

SL2(Z).

Notation 2.3 For A from {T,T−1,S} the A–side of F shall be defined to be sA = F∩AF.
Analogously MsA shall be the A-side of MF for an arbitrary M from SL2(Z).

It then follows, that MF and MAF have the A–side of MF in common, or, amounting
to the same, that MTF, MT−1F, MSF are the three neighbouring triangles of MF as
much as TF, T−1F, SF are those of F.

Phrasing the above, I have regarded the fundamental domain closure F as a ”triangle”
with the ”sides” ∞ρ, ρ (Tρ), (Tρ) ∞ where ρ = e2π i/3.

Remark 2.1 The mapping MF→ PMF for P ∈ SL2(Z) maps the T, T−1, S–side of MF

to the corresponding side of PMF.

Remark 2.2 The following algorithms all require, that Γ (or Γ1) contains
(−1 0

0 −1

)
, be-

cause the identity PF = −PF = MF shall be recognizable by the condition (P−1 M) ∈ Γ
mod N.

In our concrete application of the algorithms, this prerequisite will be always satisfied.
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FUNDAMENTAL-DOMAIN(Γ)
� It is Γ⊆ SL2(Z/NZ).

1 patches← [Id]
2 frontier← patches
3 while frontier 6= /0
4 do
5 P← first(frontier)
6 frontier← rest(frontier)
7 for A through [T,T−1,S]
8 do
9 M← PA

10 if ∃ R ∈ patches : IN-SUBGROUP(RM−1,Γ) = TRUE
11 then next
12 patches← append(patches,M)
13 if M /∈ frontier
14 then frontier← append(frontier,M)
15 res← COMPUTE-CONNECT-RELS(patches,Γ)
16 return res

COMPUTE-CONNECT-RELS(patches,Γ)
1 res← []
2 for P through patches
3 do
4 i1← GET-INDEX(PT,patches,Γ)
5 i2← GET-INDEX(PT−1,patches,Γ)
6 i3← GET-INDEX(PS,patches,Γ)
7 indices← [i1, i2, i3]
8 res-element← [P, indices]
9 res← append(res,res-element)

10 return res

The result of FUNDAMENTAL-DOMAIN(Γ) is a list res of lists [M, [i1, i2, i3]] with M
from SL2(Z) and iν from Z, such that

∪
16 j6length(res) M j F=FΓ with M j = res[ j][1] forms

a connected fundamental domain for Γ\H∗, if one carries out suitable identifications on the
border of FΓ.

These identifications are described by the indices i1, i2, i3.
In detail, the indices have the following interpretation:

1. If i1 = res[ j][2][1] > 0 the T–side of M j F will be identified with the T−1–side of
Mi1 F, specifically setting M j Tx∼Mi1 x, for all x from the T−1–side of F.

2. If i2 = res[ j][2][2] > 0 the T−1–side of M j F will be identified with the T–side of
Mi2 F, specifically setting M j x∼Mi2 Tx, for all x from the T−1–side of F.

3. If i3 = res[ j][2][3]> 0 the S–side of M j F will be identified with the S–side of Mi3 F,
specifically setting M j Sx∼Mi3 x, for all x from the S–side of F.

A negative value i1 (resp. i2, i3) indicates the same kind of identification as the corre-
sponding positive value, with the difference that the T–side (resp. the T−1–side, S–side) of
M j F is an inner side of the constructed fundamental domain FΓ.

The list res is build up by the program in two stages. First (line 1–14) a list patches
of matrices [M1, . . . ,Mr] with Mi from SL2(Z) is constructed, so that

∪
M jF = FΓ. The

routine COMPUTE-CONNECT-RELS then computes the associated gluing–data.
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The procedure of construction of patches is that of a breadth–first search in a directed
graph, controlled by the list frontier, which is used as a queue. The graph has as nodes
the matrices M from SL2(Z) and for each node M exactly three outgoing edges, which
lead to MT, MT−1, MS. We call them edges in T–, T−1–, S–direction. On identifying the
node M with the triangle MF the neighbouring nodes of M correspond to the neighbouring
triangles of MF.

The search starts at M = Id (line 1) and proceeds from the first element of frontier
successively into the T–, T−1– and S–direction as long as the list frontier, which contains
the triangles not yet taken into account as starting points, is not empty (line 3).

The T–, T−1– or S–neighbour M of P which was found in that way is checked in line
10 if it is equivalent modulo Γ to a node already accumulated in the list patches.

If yes, the for–loop will be advanced (next in line 11) and thereby prevented, that two
different elements of patches are equivalent modulo Γ.

If no, M will be added to the list patches of accumulated nodes, and, if not yet present
in frontier, appended at its end. This guarantees, that in line 3 all elements of frontier are
members of patches.

As one is proceeding in line 7 always to a T, T−1 or S–neighbour of P, it can be asserted
that

∪
M j F will be connected.

The first stage terminates, as all M j from patches are pairwise inequivalent modulo Γ
and [SL2(Z) : Γ] is well–defined and finite. For that reason the list frontier at some point
has to become empty, because line 14, in which frontier is extended, can be reached only a
finite number of times, since each time line 12 had to be reached too.

During the second stage COMPUTE-CONNECT-RELS establishes the gluing–data by
considering for each matrix P from patches the T–, T−1– and S–neighbours and finding to
each of these neighbours an equivalent or identical matrix lying in patches. The existence
of such a matrix is clear, because of the termination of the graph–search in the first stage.
The matrix is also unique, as PT ∼Γ M j1 and PT ∼Γ M j2 with M jν = patches[ jν] would
imply M j1 ∼Γ M j2 in contradiction to the pairwise inequivalence of the matrices from
patches. That the computed indices have their abovely described meaning follows from
2.1.

2.2.2 Computation of the covering of two fundamental domains

The next algorithm to consider, FUNDAMENTAL-DOMAIN2, computes for two congru-
ence subgroups Γ⊆ Γ1 of level N with images Γ⊆ Γ1 in SL2(Z/NZ) a description of the
covering Γ\H∗→ Γ1\H∗.

The invocation has the form FUNDAMENTAL-DOMAIN2(reslist,Γ1), where reslist is
the result of FUNDAMENTAL-DOMAIN(Γ).

The result is a two–element list [res,proj-list]. Therein res has the structure of a list
returned by FUNDAMENTAL-DOMAIN and describes a fundamental domain FΓ1 of Γ1\H∗
in the way illustrated in the description of FUNDAMENTAL-DOMAIN.

The list proj-list is a list of natural numbers [i1, . . . , in], where n equals the length of
reslist. The value iν has to be interpreted as stating, that under the canonical projection
Γ\H∗→ Γ1\H∗ the triangle reslist[ν][1]F from fundamental domain FΓ is mapped to the
triangle res[iν][1]F from fundamental domain FΓ1 .

In that way the result of FUNDAMENTAL-DOMAIN2 describes Γ1\H∗ as well as Γ\H∗→
Γ1\H∗ completely and explicitly.
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FUNDAMENTAL-DOMAIN2(reslist,Γ1)

� It is Γ⊆ Γ1 ⊆ SL2(Z/NZ).
� The list reslist is the result of FUNDAMENTAL-DOMAIN(Γ).

1 patches← [first(reslist)]
2 frontier← patches
3 while frontier 6= /0
4 do
5 patch-elem← first(frontier)
6 frontier← rest(frontier)
7 for i through patch-elem[2]
8 do
9 if i > 0

10 then next
11 new-elem← reslist[−i]
12 if ∃ j : IN-SUBGROUP((new-elem[1]) (patches[ j][1])−1,Γ1)
13 then next
14 patches← append(patches,new-elem)
15 if new-elem /∈ frontier
16 then frontier← append(frontier,new-elem)
17 patches-1←map(z 7→ z[1], patches)
18 res← COMPUTE-CONNECT-RELS(patches-1,Γ1)
19 proj-list← []
20 for res-elem through reslist
21 do
22 i← GET-INDEX(res-elem[1],patches-1,Γ1)
23 i← abs(i)
24 proj-list← append(proj-list, i)
25 return [res,proj-list]

The actual proceeding of FUNDAMENTAL-DOMAIN2 corresponds in the lines 1 to 18
wholly to the proceeding of FUNDAMENTAL-DOMAIN, with the difference, that the graph–
search in this case does not advance inside the graph described above, formed by all matri-
ces of SL2(Z) as nodes, but inside the subgraph embedded in it which is given by reslist.
Therein reslist[i][1] corresponds to the node and jν = reslist[i][2][ν] for ν= 1,2,3 and jν < 0
to the T,T−1,S–edges, which go out from this node. The case jν > 0 on the contrary stands
for a gluing of the respective triangles modulo Γ on the border of the fundamental domain
and shall not contribute an edge.

The check in line 9 therefore asserts, that while searching reslist only passages to neigh-
bouring nodes are taken into account and gluings modulo Γ are suppressed.

Line 17 in FUNDAMENTAL-DOMAIN2 is only necessary to get from the list patches
consisting of lists [M, [i1, i2, i3]] to a list patches-1 consisting only of matrices. The gluings
modulo Γ1 are established in line 18.

The loop from line 20 to 24 finally constructs proj-list, by determining for each M =
res-elem[1] the position of the matrix in patches-1 equivalent to M modulo Γ1. As the
elements of patches-1 are inequivalent modulo Γ1, the i computed in line 22 is uniquely
determined.

2.2.3 Computation of the ramification behaviour

As a third problem it remains to give an algorithm for analyzing the ramification behaviour
of the covering ψ : Γ\H∗→ SL2(Z)\H∗. Again, Γ shall designate a congruence subgroup
of level N, represented by its image Γ in SL2(Z/NZ). The fundamental domain FΓ shall
be described by reslist, the result of FUNDAMENTAL-DOMAIN(Γ).

12



Since the mapping ψ can ramify only above the points ρ = e2πi/3, i =
√
−1 and ∞ (with

ramification indices over ρ resp. i only 3 resp. 2 being possible) it suffices to compute the
ramification behaviour over these points.

The algorithms used for that purpose

• COMPUTE-RHO-COVERING

• COMPUTE-I-COVERING

• COMPUTE-INFINITY-COVERING

have much in common and can all be formulated as special cases of COMPUTE- COVERING.

COMPUTE-COVERING(reslist,val,select-list)

� It is reslist the result of FUNDAMENTAL-DOMAIN(Γ)
� It is val ∈ C∪{∞}
� It is select-list a list with values from {1,2,3}

1 rels← COMPUTE-RELS(val,select-list,reslist)
2 rels← SYMMETRIC-REFLEXIVE-CLOSURE(rels)
3 elem-followers← TRANSITIVE-CLOSURE(rels)
4 equivs←{}
5 for equiv-class through elem-followers
6 do
7 equivs← equivs∪{equiv-class}
8 val-images← COMPUTE-IMAGES(val,reslist)
9 ergl← []

10 for equiv-class ∈ equivs
11 do
12 point← select(z→ z[1] ∈ equiv-class,val-images)
13 ergl← append(ergl,point)
14 return ergl

COMPUTE-RHO-COVERING(reslist)

� It is reslist the result of FUNDAMENTAL-DOMAIN(Γ)
1 return COMPUTE-COVERING(reslist,ρ, [1,2,3])

COMPUTE-I-COVERING(reslist)

� It is reslist the result of FUNDAMENTAL-DOMAIN(Γ)
1 return COMPUTE-COVERING(reslist, i, [3])

COMPUTE-INFINITY-COVERING(reslist)

� It is reslist the result of FUNDAMENTAL-DOMAIN(Γ)
1 return COMPUTE-COVERING(reslist,∞, [1,2])

The idea behind the working of COMPUTE-COVERING is quite straightforward:
For a given val from ρ, i, ∞ the images w j = M j val for all M j = reslist[ j][1] are

considered. If for a certain image w=w j exactly e values j1, . . . , je with w jν ∼w exist, then
w represents in the fundamental domain FΓ a point of ramification index e over val. The
equivalence w jν ∼ w shall denote that the two points are equal in FΓ, with identifications
on the border being taken into account.

The only complications that can arise in this procedure come from the identifications
on the borders of FΓ.
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COMPUTE-RELS To allow for these identifications, in COMPUTE-RELS a relation R
among the elements Eρ = {M j ρ} j∪{M j Tρ} j for val= ρ (resp. the elements Ei = {M j

√
−1} j

for val = i =
√
−1, resp. the elements E∞ = {M j ∞} j for val =∞) will be computed, so that

two elements from Eρ (resp. Ei, resp. E∞) are equivalent modulo the symmetric, reflexive
and transitive closure R∗ of R, if and only if they are identical as elements of FΓ, taking the
gluings on the border described by reslist into account. Concretely given is R by the list
rels of pairs (w1,w2) with wi from C∪{∞}, where (w1,w2) stands for w1Rw2.

In particular, from line 9 to 12 of COMPUTE-RELS a possible identification at the T–
side of res-el[1]F will be expressed as a relation–pair rel-1. This case is relevant for val= ρ
and val = ∞ and will therefore be selected in COMPUTE-RHO-COVERING, COMPUTE-
INFINITY-COVERING by appropriately setting select-list.

Analogously from line 14 to 17 of COMPUTE-RELS a possible identification at the
T−1–side of res-el[1]F will be expressed as a relation–pair rel-2. This case too is relevant
for val = ρ and val = ∞ and so the above remark about setting select-list applies.

Finally the possible identification at the S–side of res-el[1]F is treated from line 19
to 24, here the relation–pairs rel-3a and rel-3b are generated. This case is relevant for
val = ρ and val = i =

√
−1 and will be chosen by appropriately setting select-list in

COMPUTE-RHO-COVERING, COMPUTE-I-COVERING.

COMPUTE-COVERING The relation R, represented by rels and obtained by the abovely
described method will be closed reflexive, symmetric and transitive by COMPUTE- COVERING
in the lines 2 and 3, that is the minimal equivalence relation R∗ will be determined, which is
given by the list elem-followers (in the way explained at the end of the listing of TRANSITIVE-CLOSURE).

The lines 5 to 7 in COMPUTE-COVERING transform these equivalence relation R∗ into
a set equiv of sets of elements C∪{∞}, each consisting of elements equivalent under R∗.

In line 8 a list called val-images is computed which is of the form [[w1,1], . . . , [wn,n]],
where n is the length of reslist and w j = reslist[ j][1] · val ∈ C∪{∞}.

Among the elements of val-images for every equivalence class equiv-class from equiv
those [[w j1 , j1], . . . , [w je , je]] are picked out, for which w jν ∈ equiv-class holds (line 12).

As the relation R∗, from which equiv-class was constructed, represents exactly the
gluing–data underlying FΓ, applied to the val from ρ, i, ∞ which has been considered,
it follows from the introductory remarks on the principle of operation used by COMPUTE-
COVERING that the length e of the list point is really the ramification index of the point of
FΓ lying over val and represented by an arbitrary w jν with [w jν , jν] ∈ point

The list ergl finally is a list of all points over val, its length equals |ψ−1(val)|.
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COMPUTE-RELS(val,select-list,reslist)

� It is val ∈ C∪{∞}
� It is select-list a list with values from {1,2,3}
� It is reslist the result of FUNDAMENTAL-DOMAIN(Γ)

1 rels←{}
2 for res-el through reslist
3 do
4 w←MÖBIUS(res-el[1],val)
5 rel-0← (w,w)
6 rels← append(rels,rel-0)
7 ilist← res-el[2]
8 i1← ilist[1]
9 if i1 > 0 and 1 ∈ select-list

10 then
11 rel-1← (MÖBIUS((res-el[1]) ·T,val),MÖBIUS(reslist[i1][1],val))
12 rels← append(rels,rel-1)
13 i2← ilist[2]
14 if i2 > 0 and 2 ∈ select-list
15 then
16 rel-2← (MÖBIUS(res-el[1],val),MÖBIUS((reslist[i2][1]) ·T,val))
17 rels← append(rels,rel-2)
18 i3← ilist[3]
19 if i3 > 0 and 3 ∈ select-list
20 then
21 rel-3a← (MÖBIUS((res-el[1]) ·S,val),MÖBIUS(reslist[i3][1],val))
22 rel-3b← (MÖBIUS(res-el[1],val),MÖBIUS((reslist[i3][1]) ·S,val))
23 rels← append(rels,rel-3a)
24 rels← append(rels,rel-3b)
25 return rels

COMPUTE-IMAGES(val,reslist)

� It is val ∈ C∪{∞}
� It is reslist the result of FUNDAMENTAL-DOMAIN(Γ)

1 erg-list← []
2 cnt← 0
3 for res-el through res-list
4 do
5 cnt← cnt+1
6 M← res-el[1]
7 w←MÖBIUS(M,val)
8 erg-list← append(erg-list, [w,cnt])
9 return erg-list
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TRANSITIVE-CLOSURE(R)

� R is a relation, given by a set of pairs (r1,r2).
1 elems←

∪
(r1,r2)∈R{r1,r2}

2 for e ∈ elems
3 do elem-followers[e]← /0
4 for (r1,r2) ∈ R
5 do
6 elem-followers[r1]← elem-followers[r1]∪ elem-followers[r2]∪{r2}
7 for e ∈ elems
8 do
9 if r1 ∈ elem-followers[e]

10 then elem-followers[e]← elem-followers[e]∪ elem-followers[r1]
11 return elem-followers

� The list elem-followers encodes the transitive closure
� R∗ of R as R∗ = {(r1,r2)|r1 ∈ elems,r2 ∈ elem-followers[r1]}.

MÖBIUS(M,val)

� The canonical operation of SL2(Z) on C∪{∞}, also called Möbius–transformation
� M =

(
a b
c d

)
∈ SL2(Z)

� val ∈ C∪{∞}
1 return (a val+b)

(c val+d)

2.3 An example: The covering of X+
ns(7)(C) over SL2(Z)\H∗

As described in section 1, it is X+
ns(7)(C)∼= X(7)H̄0

7 (C) and X(7)H̄0
7 (C)∼= H7\H∗ with

H̄0
p =

{(
a bl
b a

)
∈ GL2(Z/pZ)

}
∪
{(

a bl
−b −a

)
∈ GL2(Z/pZ)

}
(9)

H̄p = H̄0
p ∩SL2(Z/pZ) (10)

l ∈ Z/pZ, l quadratic non–residue

and the preimage H7 of H̄7 under SL2(Z)→ SL2(Z/7Z).
If one calls D7 the preimage under SL2(Z)→ PSL2(Z) of the group denoted 7D0 in

[9], and designates by D̄7 the image of D7 under SL2(Z)→ SL2(Z/7Z) one can check by
direct computation that

H̄7 = P̄ D̄7 P̄−1 (11)

for P =
(

7 3
9 4

)
∈ SL2(Z) and P̄ its image in SL2(Z/7Z) so that furthermore i : M 7→ PMP−1

due to
1 // Γ(7) //

∼=
��

D7 //

i
��

D̄7
//

∼=
��

1

1 // Γ(7) // H7 // H̄7
// 1

induces an isomorphism D7
∼→ H7.

As a consequence the horizontal arrow in

H7\H∗ //

$$JJJ
JJ

D7\H∗

zzttt
tt

z 7→ P−1 z

SL2(Z)\H∗

(12)

is an isomorphism over SL2(Z)\H∗.
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In particular, the ramification behaviour of H7\H∗ is the same as that of D7\H∗, which
we will now study.

For that we use, as we will need it later on, the information from [9] that there exists a
chain of subgroups

D7 ⊂ 7A0 ⊂ SL2(Z) (13)

where the image of D7 in SL2(Z/7Z) is generated by the matrices[
0 3
2 0

][
1 3
4 6

][
2 5
6 5

][
6 0
0 6

]
(14)

from SL2(Z/7Z) and the image of 7A0 in SL2(Z/7Z) is generated by the matrices above
and the two additional matrices [

4 0
6 2

][
6 6
2 1

]
(15)

It then holds that

[SL2(Z) : 7A0] = 7 (16)
[SL2(Z) : D7] = 21 (17)

Therefore we can factorize the covering D7\H∗→ SL2(Z)\H∗ as

D7\H∗
φ // 7A0\H∗

ψ // SL2(Z)\H∗ (18)

where φ is of degree 3 and ψ of degree 7.
A fundamental domain for D7\H∗ is described by the list reslist:

[[

[
1 0
0 1

]
, [−2,−3,−4]], [

[
1 1
0 1

]
, [−5,−1,−6]], [

[
1 −1
0 1

]
, [−1,−7,−8]],

[

[
0 −1
1 0

]
, [−9,−10, 1]], [

[
1 2
0 1

]
, [−11,−2,−12]], [

[
1 −1
1 0

]
, [−13,−14, 2]],

[

[
1 −2
0 1

]
, [−3,−15, 7]], [

[
−1 −1

1 0

]
, [−16, 9, 3]], [

[
0 −1
1 1

]
, [8,−4, 9]],

[

[
0 −1
1 −1

]
, [−4,−17, 13]], [

[
1 3
0 1

]
, [15,−5, 17]], [

[
2 −1
1 0

]
, [−18, 13, 5]],

[

[
1 0
1 1

]
, [12,−6,−10]], [

[
1 −2
1 −1

]
, [−6,−19, 18]], [

[
1 −3
0 1

]
, [−7, 11, 16]],

[

[
−1 −2

1 1

]
, [−20,−8, 15]], [

[
0 −1
1 −2

]
, [−10, 20, 11]], [

[
2 1
1 1

]
, [−21,−12,−14]],

[

[
1 −3
1 −2

]
, [−14, 21, 19]], [

[
−1 −3

1 2

]
, [17,−16, 20]], [

[
2 3
1 2

]
, [19,−18, 21]]]

(19)
as the result of FUNDAMENTAL-DOMAIN(D7).

With FUNDAMENTAL-DOMAIN2(reslist,7A0) one computes a fundamental domain
7A0\H∗ in the form of reslist1.

[[

[
1 0
0 1

]
, [−2,−3,−4]], [

[
1 1
0 1

]
, [−5,−1, 2]], [

[
1 −1
0 1

]
, [−1,−6, 3]],

[

[
0 −1
1 0

]
, [6,−7, 1]], [

[
1 2
0 1

]
, [7,−2, 7]], [

[
1 −2
0 1

]
, [−3, 4, 6]],

[

[
0 −1
1 −1

]
, [−4, 5, 5]]]

(20)
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As a second result one gets the mapping under the covering map φ of the triangles of
reslist to those of reslist1 according to the following table

From To
1 1
2 2
3 3
4 4
5 5
6 2
7 6

From To
8 3
9 6

10 7
11 7
12 7
13 5
14 1

From To
15 4
16 1
17 5
18 4
19 3
20 2
21 6

(21)

The ramification behaviour of ψ and ψ ◦ φ over ρ, i, ∞, as well as that of φ, can be
summarized in the following diagrams:

Figure 1: Ramification over ρ

[[15,17,20]] [[14,19,21]] [[1,8,9]]

[[2,4,13]] [2,4,5] [1,3,6] [7]

[[5,6,18]] [[3,7,16]] [[10,11,12]] (22)

Figure 2: Ramification over i

[[10,13]] [[11,17]] [[14,18]] [[15,16]]

[5,7] [1,4] [2] [3] [6]

[[5,12]] [[1,4]] [[20]] [[2,6]] [[19]] [[3,8]]

[[7]]

[[9]]

[[21]]

(23)

Figure 3: Ramification over ∞

[[1,2,3,5,7,11,15]] [[6,12,13,14,18,19,21]] [[4,8,9,10,16,17,20]]

[1,2,3,4,5,6,7] (24)

Therein [ j1, . . . , je] denotes a point of 7A0\H∗ that is ramified of index e over its image
in SL2(Z)\H∗, with [ j1, . . . , je] representing as a short form the result–form [[w j1 , j1], . . . , [w je , je]]
described in the explanation of COMPUTE-COVERING.
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Analogously [[ j1, . . . , je]] denotes a point of D7\H∗ which is e times ramified over
SL2(Z)\H∗. The arrows describe the mapping φ.

3 Determination of an uniformizer of X+
ns(7)/Z[1/7]

3.1 Preliminary considerations
In the following subsection let A = Z[ 1

7 ], let XS be X ×spec(R) spec(S) for commutative rings R→ S
and a scheme X/R and let furthermore fS be f ×idspec(R) idspec(S) for f : X → Y and schemes X/R and
Y/R.

We know from [5] and section 1 that

i) there exists an isomorphism X+
ns(7)∼= P1

A.

ii) there exists a morphism π : X+
ns(7)→ X(1) over A that corresponds in the modular

interpretation over algebraically closed fields to forgetting the 7–structure.

iii) there exists a morphism j : X(1)→ P1
A over A for which jC : X(1)C→ P1

C agrees with
jell : SL2(Z)\H∗ → P1

C. Therein jell is the usual meromorphic j–function from the
theory of elliptic functions and the isomorphism X(1)C ∼= SL2(Z)\H∗ is given by the
modular interpretation of both sides.

If now a commutative diagram

X+
ns(7)

η //

π
��

P1
A

p

��
X(1)

j // P1
A

(25)

of morphisms over spec(A) exists, in which the horizontal morphisms are isomorphisms,
we will call η a uniformizer of X+

ns(7) over A.
If one performs a base extension spec(C)→ spec(A) in (25) and calls πC, ηC, jC, pC

the extensions of π, η, j, p, the diagram

X+
ns(7)C(C)

πC

��

mod. //

ηC $$JJJ
JJ

H7\H∗

η̃zzttt
tt

can.

��

P1
C(C)

pC

��

X(1)C(C)
mod. //

jC $$JJJ
JJ

SL2(Z)\H∗

jell
zzttt

tt

P1
C(C)

(26)

results.
The horizontal morphisms in it are isomorphisms and arise through the modular inter-

pretation of both sides as coarse moduli schemes of elliptic curves over C with suitable
7–structures (X+

ns(7)C) resp. without such structures (X(1)C).
We will now take an isomorphism η̃ in (26) as given and determine ηC by η̃ so that it

will remain to prove, that ηC really arises from a diagram of the form of (25).
The morphism η̃ we will determine in the next subsection in the way that

jell =
P(η̃)
Q(η̃)

=
(2 η̃+3)3 (5 η̃2 +8 η̃−1)3 (2 η̃2− η̃+1)3 (η̃2 +3 η̃+4)3

(η̃3 + η̃2−2 η̃−1)7 (27)

is fulfilled with P,Q ∈ Z[T ] therefore being polynomials of degree d = 21.
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The relation (27) gives rise to a finite morphism

p : P1
A(E0,E1)→ P1

A(J0,J1) (28)

where E0,E1 ∈OP1
A
(1)(P1

A) and J0,J1 ∈OP1
A
(1)(P1

A) are the canonical sections and p∗(J0)=

Q(E1/E0)E21
0 as well as p∗(J1) = P(E1/E0)E21

0 .
The morphism pC in (26) is the base extension of this morphism.
The left square in (26) yields a diagram

X+
ns(7)C

ηC //

πC
��

P1
C

pC
��

X(1)C
jC // P1

C

(29)

But there is even a ηQ for which

X+
ns(7)Q

ηQ //

πQ
��

P1
Q

pQ
��

X(1)Q
jQ // P1

Q

(30)

commutes, and for which ηC = ηQ⊗QC holds.
To see this, we consider the diagram

X+
ns(7)C

ηC,σ //

πC,1

��

σ∗

����
��

��
��

P1
C

p′1

��

σ∗����
��

��
��

X+
ns(7)C

ηC //

πC

��

P1
C

p′

��

X(1)C
jC,1 //

����
��

��
��

P1
C

����
��

��
��

X(1)C
jC // P1

C

(31)

that originates from (29) through a base extension spec(C)→ spec(C), coming from an
automorphism σ ∈ Aut(C/Q).

In it jC,1, p′1, πC,1 are respectively equal to jC, p′ = pC, πC as these morphisms are
already defined over Q.

If we could now prove that γσ =σ∗◦ηC◦σ∗−1◦ηC
−1 as an automorphism of (the upper,

right, frontal) P1
C equals idP1

C
for all σ, it would follow from general theory of descent, that

ηC really stems from a ηQ, that makes (30) commute.
Now γσ definitely is of the form

E 7→ aE +b
cE +d

with a,b,c,d ∈ C, ad−bc 6= 0 (32)

where we call E = E1/E0 the affine coordinate in P1
C.

Because of the commutation relations in (31) the morphism γσ is an automorphism
of every fiber pC

−1( j), especially of the fibers over j = 0 and j = ∞ (j being regarded
as the affine coordinate in the frontal, lower, right P1

C). But these fibers are, expressed
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with E as affine coordinate nothing else but P(E) = 0 and Q(E) = 0. The corresponding
splitting fields of P(E) and Q(E) are L1 =Q(

√
7)Q(

√
3) and L2 =Q(ζ) with R(ζ) = 0 and

R(E)7 = Q(E). Both fibers contain at least three points and therefore suffice to determine
the projective automorphism γσ. Computing the values a, b, c, d from the mappings in
the fibers, one can conclude that they have to lie in L1 as well as in L2 and hence in Q as
L1∩L2 =Q.

Since inside the fibers over j = j(1), j = j(2), j = j(3) the rational points E = 1, E = 2,
E = 3 are the only rational points, and are therefore mapped onto themselves under γσ it is
γσ = idP1

C
as requested.

After having now descended to the definition ring Q, we can even find a morphism η
that makes the diagram (25) commute and for which ηQ = η⊗A Q holds.

For this we make use of the following

Proposition 3.1 Let X, Y be schemes over a principal ideal domain R and K = Q(R)
the quotient field. There shall be isomorphisms X ∼= Y ∼= P1

R. Additionally a morphism
f ′ : XK → YK shall be given.

Then f ′ = fK for a uniquely determined morphism f : X → Y over spec(R).

Proof. At first f ′ can be extended to a morphism

f ′′ : XD(r)→ YD(r)→ Y, r ∈ R, suitably chosen

This follows from [6, Théorème (8.8.2)], if one puts S0 = Sα = spec(R), Xα =X , Yα =Y
and chooses as projective system Sλ the system given by the open subsets D(r) of spec(R).

As X and Y are normal and smooth schemes, the rational map f ′′ can be extended to
a maximal domain of definition U ⊂ X , for which codimX (X −U) = 2. So X −U only
consists of finitely many closed points in closed fibers of X over R.

We now have a diagram

Γ f ′′ //

p′′1
~~}}

}}
}}

Γ̄ f ′′
� � //

p′1
}}{{

{{
{{

{
X×R Y

p1

zzvvvvvvvv p2

##FF
FF

FF
FF

U � � // X X

$$III
III

II Y

{{wwwwwww

spec(R)

(33)

where Γ f ′′ denotes the graph of f ′′ and Γ̄ f ′′ its scheme–theoretic closure in X×R Y .
In this diagram p1 and therefore p′1 is proper. As p′1 is quasi–finite it is, using Zariskis

Main Theorem, even finite. Additionally p′′1 is an isomorphism and consequently p′1 is a
birational morphism, so that for the function fields K(Γ̄ f ′′) = K(X) holds.

Locally on ring level p′1 is therefore described by diagrams

C′ // K(Γ̄ f ′′)

C //

OO

K(X)

(34)

where C′ is integral over C. As X is normal, C is integrally closed in K(X), and so C =C′

follows. But this means, that p′1 is an isomorphism and therefore determines a morphism
f = p2 ◦ (p′1)

−1. This f is the sought for morphism of the proposition.
Its uniqueness follows from the construction and the fact that a morphism from a re-

duced into a separated scheme is determined by its restriction to any open dense subscheme.
�
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As the base extension spec(Q)→ spec(A) of (25) equals (30), the map η can be ob-
tained as the extension of ηQ over the whole of spec(A) = spec(Z[ 1

7 ]) which exists and is
uniquely determined by proposition 3.1.

The commutativity of (25) then follows from those of (30) and the uniqueness assertion
in proposition 3.1. That the schemes considered fulfill the assumptions of proposition 3.1
follows from Proposition 1.5 for X+

ns(7) from Proposition 1.4 for X(1) and trivially for P1
A.

3.2 The uniformization over C
As remarked in the previous subsection, the problem remains to be solved, to explicitly
uniformize the covering H7\H∗→ SL2(Z)\H∗ that is, to find an η for which

H7\H∗
η //

��

P1
C

p

��
SL2(Z)\H∗

jell // P1
C

(35)

commutes and p is explicitly known (we write η in this subsection instead of η̃ in the
previous one).

In [4] a general procedure to solve this problem is given that can be formulated in
abstract terms as follows:

Proposition 3.2 Let X π→ Y be a covering of Riemann surfaces of genus 0 with explicitly

known ramification behaviour. Additionally for an isomorphism Y
f→ P1

C the values f (Ri)
shall be known for all Ri ∈ Y above which π ramifies (i = 1,. . .,s). Furthermore, let R0 and
R∞ be the points from Y with f (R0) = 0 and f (R∞) = ∞.

Then one can explicitly construct a morphism p : P1
C→ P1

C for which an isomorphism
g : X → P1

C exists, so that

X
g //

π

��

P1
C

p

��
Y

f // P1
C

(36)

commutes.

Proof. Let P1, . . . ,Pd ∈ X be the points above R0 and Q1, . . . ,Qd ∈ X the points above
R∞, where d is the degree of the covering X π→Y and multiply occurring Pi or Qi are allowed
according to possible ramification of π.

Then

f = λ
(g−g(P1)) · · · · · (g−g(Pd))

(g−g(Q1)) · · · · · (g−g(Qd))
=

P(g)
Q(g)

, λ ∈ C (37)

holds, as one can see immediately by comparing divisors left and right.
Therein we identify f from the function field K(Y ) with its image π∗( f ) in K(X) under

π∗ : K(Y )→ K(X). A value g(Pi) = ∞ or g(Qi) = ∞ leads to the omission of the corre-
sponding factor.

To obtain now relations for actually determining the λ, g(Pi), g(Qi), we draw on the
Ri 6= R0,R∞ ∈ Y , above which π ramifies in a known way.

Let R be such an Ri, and let S1, . . . ,Sd be the points above it, with repetitions because
of the ramification.

Then

( f − f (R))(R) = 0 ( f − f (R))(R∞) = ∞ (38)
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holds and therefore by comparison of divisors

f − f (R) = µ
(g−g(S1)) · · · · · (g−g(Sd))

(g−g(Q1)) · · · · · (g−g(Qd))
=

TR(g)
Q(g)

, µ ∈ C (39)

Using (37) one gets from that

λP(g)− f (R)Q(g) = µ(g−g(S1)) · · · · · (g−g(Sd)) = TR(g) (40)

By comparing coefficients of corresponding powers of g in (40) a set ΣR of d +1 poly-
nomial relations between λ, µ, g(Pi), g(Qi), g(Si) results. With every new R = Ri the
number of unknowns grows, but also the number of relations until finally only R ∈ Y are
available for forming relations over which π does not ramify and for which (40) allows as
many degrees of freedom (that is d +1) as it provides relations. By solving the simultane-
ous relations ΣRi for all Ri 6= R0,R∞, one obtains with every solution an expression

f = λ
P(g)
Q(g)

(41)

with explicitly known λ, P, Q and g, which is uniquely determined by its values at three
points. This g is the one requested in (36), the mapping p is explicitly known as p(g) =
λP(g)/Q(g). �

To construct η and p in (35), we first recall the remarks from the beginning of sub-
section 2.3. We have introduced there the inner automorphism i : SL2(Z)→ SL2(Z) with
M 7→ PMP−1 and P =

(
7 3
9 4

)
that maps the subgroup D7 isomorphically onto H7. Defining

the image 7Ã0 def
= i(7A0) it holds that

H7 ⊂ 7Ã0 ⊂ SL2(Z) (42)

Accordingly, the chain of coverings (18) becomes, under the isomorphisms of quotients
of H∗ induced by i, a chain of coverings

H7\H∗
φ // 7Ã0\H∗

ψ // SL2(Z)\H∗ (43)

where we gave the new covering maps the old names φ and ψ. Obviously the structure
of ramification in (43) is the same as in (18), so we can, mutatis mutandis, carry over the
ramification structure depicted in (22), (23), (24) to the situation in (43).

To keep the computation manageable, we use the chain (43) and construct an uni-
formizer ξ of 7Ã0\H∗ over j first, and secondly an uniformizer η of H7\H∗ over ξ.

So let, with the notations of proposition 3.2, X = 7Ã0\H∗ and Y = SL2(Z)\H∗ as well
as π = ψ. As the function f , we choose j = jell, the usual j–function on SL2(Z)\H∗.

Then the points R1 = ρ, R2 = i, R3 = ∞ are the branch points and R0 = R1 because
of j(ρ) = 0 as well as R∞ = R3 because of j(∞) = ∞. The value j(R2) = j(i) = 1728 is
known.

For abbreviation we denote the points called [2,4,5] and [1,3,6] in (22) by P̃1 = P1 =
P2 = P3 and P̃2 = P4 = P5 = P6 respectively. The point called [7] we denote by P̃3 = P7 and
furthermore the point called [1,2,3,4,5,6,7] in (24) by Q = Q1 = . . .= Q7.

The isomorphism g from proposition 3.2 we call ξ and dispose over its values such that
ξ(Q) = ∞ and ξ(P̃3) = 0.

The product (ξ− ξ(P̃1))(ξ− ξ(P̃2)) we write as ξ2 + Aξ + B, so that equation (37)
becomes

j = λ(ξ2 +Aξ+B)3 ξ (44)

Above the point R2 = i lie, according to figure (23) the points S1 = S2 = [5,7], S3 =
S4 = [1,4], S5 = [2], S6 = [3], S7 = [6] (bracketed lists referring to notation in (23)).
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Introducing the equations (ξ− ξ(S1))(ξ− ξ(S3)) = ξ2 +C ξ+D and (ξ− ξ(S5))(ξ−
ξ(S6)) = ξ2 +E ξ+F as well as ξ(S7) = G, the equation (40) for R = R2 takes the form

1728−λ(ξ2 +Aξ+B)3 ξ = µ(ξ2 +C ξ+D)2 (ξ2 +E ξ+F)(ξ−G) (45)

Equating coefficients of like powers ξk one obtains the system of expressions required
to vanish

1728+µD2 F G,

−λB3−µD2 F +(µD2 E +2µDC F)G,

−3λB2 A−µD2 E−2µDC F +(µD2 +2µDC E +µ(2D+C2)F)G,

−λ−µ,

−3λA−2µC−µE +µG,

−λ(3B+3A2)−µ(2D+C2)−2µC E−µF +(2µC+µE)G,

−λ(4BA+A(2B+A2))−2µDC−µ(2D+C2)E−2µC F

+(µ(2D+C2)+2µC E +µF)G,

−λ(B(2B+A2)+2A2 B+B2)−µD2−2µDC E−µ(2D+C2)F

+(2µDC+µ(2D+C2)E +2µC F)G

(46)

A Gröbner base of these polynomials in lexicographical term ordering E > F > G >
C > D > µ > B > A > λ is

86812553324672+λ2 A14 +10706059λA7,

161414428B−λA9−37059435A2,

λ+µ,

1129900996D−λA9−37059435A2,

7C−4A,

7909306972G3 +14688712948AG2 +133GλA9 +9287094411GA2

+108λA10 +2134623456A3,

1129900996F−1129900996G2−2098387564AG−19λA9−1326727773A2,

−13A+7E−7G

(47)

One notices, upon trying to solve the equations from top to bottom, that one degree of
freedom remains, which corresponds with the fact, that we have disposed over the values
of ξ at two, but not at three places.

So we set arbitrarily λ = 1 and solve (47), from which we obtain for the quantities
relevant for determining the relation between j and ξ

λ = 1, (48a)

B =−35
2

+
7
2

i
√

7, (48b)

A =
7
2
+

7
2

i
√

7 (48c)

Therewith p from proposition 3.2 is determined for the mapping ψ.

24



The remaining values of the same solution system are

C = 2+2 i
√

7,

D =−5
2
+

1
2

i
√

7

E = 2+4 i
√

7,
F =−27

G =−9
2
− 5

2
i
√

7,

µ =−1,

(49)

As we will need the values t1 = ξ(S5) and t2 = ξ(S6) later on, we determine them from
the equation (ξ−ξ(S5))(ξ−ξ(S6)) = ξ2 +E ξ+F given above, to be

t1 =−α−2−4 i
√

7, (50a)
t2 = α (50b)

with α being an arbitrary, fixed root of

α2 +(2+4 i
√

7)α−27 = 0 (51)

In the second step we set X = H7\H∗ and Y = 7Ã0\H∗ as well as π = φ. The function
f then becomes ξ, the function g we call η, it is the η searched in (35).

To distinguish the newly appearing points below from the former ones, we will mark
the new ones with a prime.

It is then R′0 = P̃3, R′∞ = Q and R′2 = S5, R′3 = S6 with the point–names from above.
Above R′0 lies, according to figure (22) the 3–fold point P′ = [[10,11,12]], so it is

P′1 = P′2 = P′3 = P′. Therewith one can put R′1 = R′0.
Above R′∞ lie the three cusps Q′1, Q′2, Q′3. We dispose over the values η(Q′i) such, that(

η−η(Q′1)
) (

η−η(Q′2)
) (

η−η(Q′3)
)
= η3 +η2−2η−1 (52)

So the equation for ξ and η corresponding to equation (37) is

ξ = λ1
(η−d)3

η3 +η2−2η−1
(53)

with d = η(P′)
The relations flowing from the ramification as explicated in equation (40) are for R′2

because of ξ(R′2) = ξ(S5) = t1 and (23)

λ1 (η−d)3− t1 (η3 +η2−2η−1) =−µ21 (η−A1)
2 (η−B1) (54)

and for R′3 because of ξ(R′3) = ξ(S6) = t2 and (23)

λ1 (η−d)3− t2 (η3 +η2−2η−1) =−µ22 (η−A2)
2 (η−B2) (55)

Suitably simplified (54) becomes

(−α−4 i
√

7−λ1−2−µ21)η3

+(3λ1 d−2−4 i
√

7−α+2µ21 A1 +µ21 B1)η2

+(−µ21 A1
2−2µ21 A1 B1−3λ1 d2 +4+8 i

√
7+2α)η

+µ21 A1
2 B1 +4 i

√
7+λ1 d3 +α+2 = 0

(56)
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and (55) becomes

(α−λ1−µ22)η3

+(α+3λ1 d +2µ22 A2 +µ22 B2)η2

+(−µ22 A2
2−2µ22 A2 B2−2α−3λ1 d2)η

+µ22 A2
2 B2−α+λ1 d3 = 0

(57)

Introducing the variables z with z2 =−7 and w = α with w2 +(2+4z)w−27 = 0 the
system of expressions obtained from extracting coefficients of ηk in (56) and (57) can be
regarded as a system of generators of an ideal a in Q[λ1,µ21,µ22,A1,B1,A2,B2,z,d,w].

By computing a Gröbner base for a with respect to an elimination term–ordering (for
what I have used the CAS–system MAGMA), one obtains a base for the ideal b = a∩
Q[λ1,d,z,w] as

λ1
3 +

89831
21866

λ1
2 z+

2265
754

λ1 d z− 176535
21866

d2 z+
22456
10933

λ1
2 +

3
13

λ1 d

−285383
21866

d2 +
22
29

λ1 z− 146605
21866

d z−44λ1−
833
841

d− 55241
1682

z+
114044
10933

,

(58a)

λ1
2 d +

55
29

λ1 d z+
97
58

d2 z+
127
58

λ1
2 +

55
58

λ1 d− 679
58

d2

+
182
29

λ1 z+
14
29

d z+
91
29

λ1−
875
58

d− 195
29

z− 2219
58

,

(58b)

λ1 d2− 1
10933

λ1
2 z− 105

21866
d2 z+

1
21866

λ1
2

+
643
754

λ1 d− 49
21866

d2 +
761

10933
d z− 2

29
λ1 +

805
21866

d− 10807
10933

z− 10885
21866

,

(58c)

d3 +
23
754

λ1
2 z− 495

3016
λ1 d z+

1
8

d2 z+
161
754

λ1
2 +

231
3016

λ1 d− 505
3016

d2

+
135
232

λ1 z+
1123
1508

d z− 63
232

λ1 +
1093
1508

d− 3689
3016

z− 6215
3016

,

(58d)

w3 +4w2 +108z+89w−54, (58e)

z2 +7, (58f)

zw+
1
4

w2 +
1
2

w− 27
4

(58g)

With the CAS–system MAPLE one possible solution of this system can be found to be

d =−3
2
+

1
2

i
√

7, (59a)

λ1 =−1, (59b)

w =−1−2 i
√

7+2
√

i
√

7, (59c)

z = i
√

7 (59d)

Since the ideal b is zero–dimensional, there is really a solution of a above (59).
If one substitutes the λ1 and d found thus into (53) and further substitutes the ξ so

obtained together with the values from (48a)-(48c) into (44) the final result is

j =
(2η+3)3 (5η2 +8η−1)3 (2η2−η+1)3 (η2 +3η+4)3

(η3 +η2−2η−1)7 (60)

So η from (35) is determined, p is given explicitly by (60).
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3.3 Summary
In the diagram

X+
ns(7)

η //

π

��

P1
Z[1/7]

p

��
X(1)

j // P1
Z[1/7]

(61)

we have constructed an isomorphism η in such a way, that, calling E = E1/E0 the affine
coordinate of the ”upper” P1 and J = J1/J0 the affine coordinate of the ”lower” P1, the map
p is given by

J =
(2E +3)3 (5E2 +8E−1)3 (2E2−E +1)3 (E2 +3E +4)3

(E3 +E2−2E−1)7 (62)

So the questions 1 and 2 of [5, 6.4.4] are answered in the affirmative, the denominator
polynomial called Q?(T0,T1) there corresponds to the (E3 + E2 − 2E − 1) appearing in
(62).

As described in [5, 6.4] we have the isomorphism η :Y+
ns (7)

∼→ p−1(D+(J0))=D+(E3
1 +

E2
1 E0−2E1 E2

0 −E3
0 ) with E0, E1 as the projective coordinates of P1

Z[1/7].

4 Determination of Y+
ns(7)(Z[1/7])

By virtue of the results of the last section it is

Y+
ns (7)∼= D+ (Q0(E0,E1))⊂ P1

Z[1/7](E0,E1) (63)

with Q0(E0,E1) = E3
1 +E2

1 E0−2E1 E2
0 −E3

0 (64)

As further explicated in [5, 6.4.5] the points Y+
ns (7)(Z[1/7]) correspond to the integer

solutions of the diophantine equations Q0(E0,E1) ∈ {1,7}, which are both of Thue–type.
For equations of this type effective and practically feasible solution algorithms exist

([1]), which are implemented for example in the CA–system MAGMA([2]).
A computation yields as complete solution system of Q0(E0,E1) = 1

(E1,E0) j

(−9,5) −2183353233293

(−1,−1) −2183353

(−1,1) −215

(−1,2) −2153353113

(0,−1) 2633

(1,0) 2653

(2,−1) 2333113

(4,−9) 291761932931493

(5,4) 2611323314932693

(65)

and of Q0(E0,E1) = 7
(E1,E0) j

(−3,2) 0

(1,−3) 21575

(2,1) 235375

(66)

27



5 Application to the class number h = 1 problem
The following table contains imaginary quadratic number fields K = Q(

√
−d) together

with orders OK, f ⊂ K with conductor f , such that the class number h of OK, f equals 1.
The class number is in every special case explicitly computable, suitable algorithms are
implemented for example in the CA–system MAGMA.

In the last column the j–invariant of the elliptic curve E(K, f ), which is defined by the
lattice OK, f ⊂ C, is given. Equating OK, f = Z+Zτ this is the value j(τ) of the classical
j–function.

The value j(τ) here has to be always in Z, as, firstly, the galois group Gal(K( j(τ))/K)
equals the Picard group of OK, f . As these is trivial, it follows K( j(τ)) = K. Secondly it
is [Q( j(τ)) : Q] = [K( j(τ)) : K] and thirdly j(τ) is an algebraic integer, so consequently
j(τ) ∈ Z. For proofs of these facts, see [10, Theorem 4.14; Theorem 5.7]

Therefore we can compute j(τ) in every single case numerically with sufficient preci-
sion, and from that infer its true value in Z.

K f OK, f j
Q(
√
−1) 1 Z+Z

√
−1 2633

Q(
√
−1) 2 Z+Z2

√
−1 2333113

Q(
√
−2) 1 Z+Z

√
−2 2653

Q(
√
−3) 1 Z+Z −1+

√
−3

2 0

Q(
√
−11) 1 Z+Z −1+

√
−11

2 −215

Q(
√
−43) 1 Z+Z −1+

√
−43

2 −2183353

Q(
√
−67) 1 Z+Z −1+

√
−67

2 −2153353113

Q(
√
−163) 1 Z+Z −1+

√
−163

2 −2183353233293

(67)

On comparing the j–invariants in (67) with those in (65) and (66), one notices, that 8
of the points in (65) and (66) correspond to elliptic curves with complex multiplication,
thereof are 6 with complex multiplication in the principal order OK of K = Q(

√
−d) and

p = 7 inert in OK . The cases are d = 1, 2, 11, 43, 67, 163, and, following the considerations
in section 1, the corresponding points come from an H̄0

7 –structure on the elliptic curve
E(K,1).

These results agree with those of [8], up to a misprint there, giving the case d = −67
the wrong sign for j.

5.1 Criteria for complex multiplication with given j

After all, 4 points from the lists (65) and (66) remain to be examined for their potential
origin from elliptic curves with complex multiplication.

For this, we use the following proposition [3, Theorem 6.3]

Proposition 5.1 Let E/K be an elliptic curve defined over an algebraic number field K/Q.
With E[N](Q) shall be denoted the set of N–division points, and with k(P) the field of

definition of a point P ∈ E(Q).
If E has complex multiplication and L = Q(

√
−d) is the imaginary quadratic field

whose order equals End(E), the extension of fields

Ldiv K = L
(
(k(P))P∈E[N](Q)

)
K/LK

is abelian for all N > 1.

Corollary 5.1 Let E be as above, with complex multiplication, but explicitly given by a
Weierstraß equation y2 = x3 +ax+b in A2

K . For P ∈ E(Q) let x(P) and y(P) be the x– and
y–coordinate of P.
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Then the extension K
(
(x(P))P∈E[N](Q)−{0̄}

)
/K is solvable.

Now one can, for an E as in the corollary and for every N > 1, explicitly give a
polynomial ψN(x;a,b), so that the x0 with ψN(x0;a,b) = 0 are exactly the x(P) with
P ∈ E[N](Q)∩A2

K(Q). This polynomial has, for N > 3 and N odd, the degree (N2−1)/2
in x and is called division polynomial of order N. Together with the Weierstraß equation
itself, it describes the affine part of the subgroup scheme E[N] of N–division points of E.

So we can for the remaining 4 points

(E1,E0) j
(4,−9) 291761932931493

(5,4) 2611323314932693

(1,−3) 21575

(2,1) 235375

(68)

construct initially a Weierstraß equation y2 = x3+ax+b over Q, so that the corresponding
elliptic curve has the prescribed j–invariant. Subsequently, we compute for a suitably
chosen N > 3 the division polynomial ψN(x;a,b) and then the Galois group Gal(F/Q) of
the splitting field F/Q of ψN(x;a,b). If this group is not solvable, the elliptic curve with
the given j–invariant can not have complex multiplication.

As the intermediate results, especially the division polynomials, become very huge, I
do not present them here, but instead give only the MAGMA command sequence to execute
the computation:

jj:=2^9*17^6*19^3*29^3*149^3;

ec:=EllipticCurveFromjInvariant(jj);

ec1:=MinimalModel(ec);

pol:=DivisionPolynomial(ec1,5);

g:=GaloisGroup(pol);

IsSoluble(g);

The j–invariant here is the one of the first point in (68), for the other points only the value
jj in the first line has to be changed. In any case the Galois group turns out as not solvable,
so to all 4 remaining points belong elliptic curves without complex multiplication, which
again agrees with [8]

5.2 The class number h = 1 problem
As already explained in the introduction, every imaginary quadratic number field K of
class number 1, in which p = 7 is inert, gives rise to a point in Y+

ns (7)(Z[1/7]), to which
corresponds an elliptic curve with complex multiplication in K.

We have found 12 points Y+
ns (7)(Z[1/7]) and discussed their possible origin from those

number fields exhaustively. It follows, that additional imaginary quadratic number fields
K with class number 1 and p inert in K can not exist, since they would produce points in
Y+

ns (7)(Z[1/7]), that are different from each other and from those already found, because
their j–invariant would differ.

So additional imaginary quadratic number fields with h = 1 could only exist, if p = 7
would not be inert in them. But this can be excluded for Q(

√
−d) with d > 163 by the

following lemma:

Lemma 5.1 Let K =Q(
√
−d) be an imaginary quadratic number field with class number

h = 1. Let d > 4p for a prime number p. Then p is inert in K.

Proof. By making an ansatz (m+nτ)(m+n τ̄) = p with OK = Z+Zτ and direct compu-
tation. �

Since for 1 6 d 6 163 all imaginary quadratic number fields with class number 1 are
known, therewith all of these are known.
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